By applying the wavefront coding technique to an optical system, the depth of focus can be greatly increased. Several complicated methods, such as Fisher Information based method, have already been taken to optimize f...By applying the wavefront coding technique to an optical system, the depth of focus can be greatly increased. Several complicated methods, such as Fisher Information based method, have already been taken to optimize for the best pupil phase mask in ideal condition. Here one simple point spread function (PSF) based method with only the standard deviation method used to evaluate the PSF stability over the depth of focus is taken to optimize for the best coefficients of pupil phase mask in practical optical systems. Results of imaging simulations for optical systems with and without pupil phase mask are presented, and the sharpness of image is calculated for comparison. The optimized results showed better and much more stable imaging quality over the original system without changing the position of the image plane.展开更多
This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the ...This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function. Finally, a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.展开更多
The point spread function(PSF)caused by a wavefront coding system with a cubic phase mask has big side-lobes which leads to bad image restoration.This paper proposes a novel apodized cubic phase mask to suppress the s...The point spread function(PSF)caused by a wavefront coding system with a cubic phase mask has big side-lobes which leads to bad image restoration.This paper proposes a novel apodized cubic phase mask to suppress the side-lobes of the PSF.Simulated annealing algorithm is used to optimize the cubic and the truncation parameter of the phase mask.The system with the novel phase mask has better performance in the modulation transfer function(MTF)especially in low-and-medium spatial frequency region.The simulation results show that the restored images with the novel phase mask are superior to the one with the classic cubic phase mask in contrast and ringing effect.The experimental results show that the side-lobes of the PSF are suppressed by using the apodized cubic phase mask.展开更多
文摘By applying the wavefront coding technique to an optical system, the depth of focus can be greatly increased. Several complicated methods, such as Fisher Information based method, have already been taken to optimize for the best pupil phase mask in ideal condition. Here one simple point spread function (PSF) based method with only the standard deviation method used to evaluate the PSF stability over the depth of focus is taken to optimize for the best coefficients of pupil phase mask in practical optical systems. Results of imaging simulations for optical systems with and without pupil phase mask are presented, and the sharpness of image is calculated for comparison. The optimized results showed better and much more stable imaging quality over the original system without changing the position of the image plane.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No. Y1110455)the Scientific Research Fund of Educational Department of Zhejiang Province,China (Grant No. Y200909691)the Science Foundation of Zhejiang Sci-Tech University (Grant No. 0913849-Y)
文摘This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function. Finally, a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.
文摘The point spread function(PSF)caused by a wavefront coding system with a cubic phase mask has big side-lobes which leads to bad image restoration.This paper proposes a novel apodized cubic phase mask to suppress the side-lobes of the PSF.Simulated annealing algorithm is used to optimize the cubic and the truncation parameter of the phase mask.The system with the novel phase mask has better performance in the modulation transfer function(MTF)especially in low-and-medium spatial frequency region.The simulation results show that the restored images with the novel phase mask are superior to the one with the classic cubic phase mask in contrast and ringing effect.The experimental results show that the side-lobes of the PSF are suppressed by using the apodized cubic phase mask.