The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show ...The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show the dependance of the transmission spectrum on the slit structure. A sandwiched structure is used to exhibit the contribution of the metallic wall inside slits to the extraordinary high transmission. And a filled slit structure is employed to reflect the relation between the average refractive index inside the slits and the transmission spectrum of the structure. The transmission characteristics of two structures can be explained well with the waveguide resonance theory.展开更多
We developed a biosensor that is capable for simultaneous surface plasmon resonance(SPR)sensing and hyperspectral fuores cence analysis in this paper.A symmetrical metal-dielectric slabscheme is employed for the excit...We developed a biosensor that is capable for simultaneous surface plasmon resonance(SPR)sensing and hyperspectral fuores cence analysis in this paper.A symmetrical metal-dielectric slabscheme is employed for the excitation of coupled plasnon waveguide resonance(CPWR)in thepresent work.Resonance bet ween surface plasmon mode and the guided waveguide mode gen-erates narrower full width half-maximum of the refective curves which leads to increased pre.cision for the determination of refractive index over conventional SPR sensors.In addition,CPWR also fers longer surface propagation depths and higher surface electric field strengthsthat enable the excitation of fluorescence with hyperspectral technique to maintain an appreci-able signal-to-noise ratio.The refractive index information obtained from SPR sensing and thechemical properties obt ained through hyperspectral fluorescence analysis confirm each other toexclude false-positive or false-negative cases.The sensor provides a comprehensive understandingof the biological events on the sensor chips.展开更多
The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is ...The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.展开更多
The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four ...The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.展开更多
Based on the measurement of the contrast ratios of the transmission spectra from the throughput and drop ports of ring resonator, an efficient method is proposed to extract the coupling ratio and round-trip loss of th...Based on the measurement of the contrast ratios of the transmission spectra from the throughput and drop ports of ring resonator, an efficient method is proposed to extract the coupling ratio and round-trip loss of the integrated optical waveguide ring resonator. The parameters of a racetrack resonator prepared by ion-exchange technique in K9 optical glass substrate are examined, which demonstrates the validity of this method. The accuracy and applicable range of this method are also discussed.展开更多
We propose a scheme for transferring entanglement through two independent arrays of coupled resonator waveguides, where a three-level atom is embedded in each resonator. We investigate the entanglement dynamics of the...We propose a scheme for transferring entanglement through two independent arrays of coupled resonator waveguides, where a three-level atom is embedded in each resonator. We investigate the entanglement dynamics of the transferred state. The influence of initial states and applied lasers on the entanglement sudden death phenomenon is also discussed. Furthermore, we study the dynamics of pairwise quantum correlations measured by the quantum discord.展开更多
A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain...A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk- shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which tile refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45 × 10-7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. Tile sensor working for temperature sensing is also analyzed.展开更多
Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold ...Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film. We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant. Based on the distributions of normal electric field component Ez, tangential electric field component Ey and total energy, we showed that the optical transmission is due to the collaboration of the localized waveguide resonance, the surface plasmon resonance and the coupling of the fiat-surface plasmon of the two layers.展开更多
We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can...We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can be influenced strongly by layer distance. We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance. We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D. We also describe and explain the splitting, shift, and degeneration of the surface plasmon resonant transmission peak theoretically. In addition, to clarify the physical mechanism of the transmission behaviours, we analyse the distributions of electric field and total energy for the three transmission peaks with distance D = 45 nm for the double-layer system. Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers, and for different resonant wavelengths the electric field and energy distributions are different. It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.展开更多
We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are su...We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.展开更多
We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-re...We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.展开更多
The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)reson...The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)resonant dielectric nanostructures hold great promise,as they enhance nonlinear effects through the resonantly local electromagnetic fields overlapping the chosen nonlinear materials.Here,we propose a method for the enhanced sum-frequency generation(SFG)from etcheless lithium niobate(LiNbO_(3))by utilizing the dual quasi-bound states in the continuum(quasi-BICs)in a one-dimensional resonant grating waveguide structure.Two high-Q guided mode resonances corresponding to the dual quasi-BICs are respectively excited by two near-infrared input beams,generating a strong visible SFG signal with a remarkably high conversion efficiency of 3.66×10^(-2)(five orders of magnitude higher than that of LiNbO_(3)films of the same thickness)and a small full-width at half-maximum less than 0.2 nm.The SFG efficiency can be tuned via adjusting the grating geometry parameter or choosing the input beam polarization combination.Furthermore,the generated SFG signal can be maintained at a fixed wavelength without the appreciable loss of efficiency by selectively exciting the angle-dependent quasi-BICs,even if the wavelengths of input beams are tuned within a broad spectral range.Our results provide a simple but robust paradigm of high-efficiency frequency conversion on an easy-fabricated platform,which may find applications in nonlinear light sources and quantum photonics.展开更多
An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) s...An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.展开更多
A hybrid quantum architecture was proposed to engineer a localization-delocalization phase transition of light in a two-dimension square lattices of superconducting coplanar waveguide resonators,which are interconnect...A hybrid quantum architecture was proposed to engineer a localization-delocalization phase transition of light in a two-dimension square lattices of superconducting coplanar waveguide resonators,which are interconnected by current-biased Josephson junction phase qubits.We find that the competition between the on-site repulsion and the nonlocal photonic hopping leads to the Mott insulator-superfluid transition.By using the mean-field approach and the quantum master equation,the phase boundary between these two different phases could be obtained when the dissipative effects of superconducting resonators and phase qubit are considered.The good tunability of the effective on-site repulsion and photon-hopping strengths enable quantum simulation on condensed matter physics and many-body models using such a superconducting resonator lattice system.The experimental feasibility is discussed using the currently available technology in the circuit QED.展开更多
In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus wav...In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom(photon) excitation, which can be useful for atomic related sensors and single-photon source applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604042 and 10674038) and National Basic Research Program of China (Grant No 2006CB302901).
文摘The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show the dependance of the transmission spectrum on the slit structure. A sandwiched structure is used to exhibit the contribution of the metallic wall inside slits to the extraordinary high transmission. And a filled slit structure is employed to reflect the relation between the average refractive index inside the slits and the transmission spectrum of the structure. The transmission characteristics of two structures can be explained well with the waveguide resonance theory.
基金the financial support from NSFC Chima(grants 61275188,81171375 and 61361160416)the key prjet of Guangdong province(2012A080203008)+1 种基金the Basic Research Pro-gram of Shenzhen City(jC20110520121A)State Key Laboratory Open Foundation Issue,China(grant 12K05ESPCT).
文摘We developed a biosensor that is capable for simultaneous surface plasmon resonance(SPR)sensing and hyperspectral fuores cence analysis in this paper.A symmetrical metal-dielectric slabscheme is employed for the excitation of coupled plasnon waveguide resonance(CPWR)in thepresent work.Resonance bet ween surface plasmon mode and the guided waveguide mode gen-erates narrower full width half-maximum of the refective curves which leads to increased pre.cision for the determination of refractive index over conventional SPR sensors.In addition,CPWR also fers longer surface propagation depths and higher surface electric field strengthsthat enable the excitation of fluorescence with hyperspectral technique to maintain an appreci-able signal-to-noise ratio.The refractive index information obtained from SPR sensing and thechemical properties obt ained through hyperspectral fluorescence analysis confirm each other toexclude false-positive or false-negative cases.The sensor provides a comprehensive understandingof the biological events on the sensor chips.
基金supported by the National Program on Key Basic Research Project of China under Grant No.2014CB339806Basic Research Key Project under Grant No.12JC1407100+1 种基金Major National Development Project of Scientific Instrument and Equipment under Grant No.2011YQ150021 and No.2012YQ14000504the National Natural Science Foundation of China under Grant No.11174207,No.61138001,No.61205094,and No.61307126
文摘The influence of air gaps on the response of transmission for a transverse-electric mode parallel-plate waveguide(TE-PPWG) with a single cavity and double cavities has been studied experimentally. As the air gap is larger than the resonant wavelength of high order cavity mode in the single deep grooved waveguide, only the fundamental cavity mode can be excited and single resonance can be observed in the transmission spectrum. Based on above observations, a tunable multiband terahertz(THz)notch filter has been proposed and the variation of air gap has turned out to be an effective method to select the band number. Experimental data and simulated results verify this band number tunability. This mechanical control mechanism for electromagnetic induced transparency(EIT) will open a door to design the tunable THz devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11105001the Anhui Provincial Natural Science Foundation under Grant Nos 1408085QA22 and 1608085MA09
文摘The single photon scattering properties in a pair of waveguides coupled by a whispering-gallery resonator in- teracting with a semiconductor quantum dot are investigated theoretically. The two waveguides support four possible ports for an incident single photon. The quantum dot is considered a V-type system. The incident direction-dependent single photon scattering properties are studied and equal-output probability from the four ports for a single photon incident is discussed. The influences of backscattering between the two modes of the whispering-gallery resonator for incident direction-dependent single photon scattering properties are also pre- sented.
基金National Natural Science Foundation of China(60577014)Young Teacher Cultivation Foundation of Dalian University of Technology(893210) Doctor Start-up Foundation of Dalian University of Technology(893322)
文摘Based on the measurement of the contrast ratios of the transmission spectra from the throughput and drop ports of ring resonator, an efficient method is proposed to extract the coupling ratio and round-trip loss of the integrated optical waveguide ring resonator. The parameters of a racetrack resonator prepared by ion-exchange technique in K9 optical glass substrate are examined, which demonstrates the validity of this method. The accuracy and applicable range of this method are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774131)
文摘We propose a scheme for transferring entanglement through two independent arrays of coupled resonator waveguides, where a three-level atom is embedded in each resonator. We investigate the entanglement dynamics of the transferred state. The influence of initial states and applied lasers on the entanglement sudden death phenomenon is also discussed. Furthermore, we study the dynamics of pairwise quantum correlations measured by the quantum discord.
基金Supported by the National Natural Science Foundation of China under Grant No 61275059
文摘A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk- shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which tile refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45 × 10-7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. Tile sensor working for temperature sensing is also analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant No.60708014)the Science Foundation for Postdoctorate of China(Grant No.2004035083)+2 种基金the Natural Science Foundation of Hunan Province of China(Grant No.06JJ2034)the Excellent Doctorate Dissertation Foundation of Central South University(Grant No.2008yb039)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2009B029)
文摘Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film. We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant. Based on the distributions of normal electric field component Ez, tangential electric field component Ey and total energy, we showed that the optical transmission is due to the collaboration of the localized waveguide resonance, the surface plasmon resonance and the coupling of the fiat-surface plasmon of the two layers.
基金supported by the National Natural Science Foundation of China (Grant No. 60708014)the Science Foundation for Postdoctorate of China (Grant No. 2004035083)+2 种基金the Natural Science Foundation of Hunan Province of China (Grant No. 06JJ2034)the Excellent Doctorate Dissertation Foundation of Central South University of China (Grant No. 2008yb039)the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2009B029)
文摘We investigate the relationship between the transmission and the layer distance of double-layer gold slit arrays by using the finite-difference time-domain method. The results show that the transmission properties can be influenced strongly by layer distance. We attribute the two types of resonant modes to surface plasmon resonance and the localised waveguide resonance. We find that the localised waveguide transmission peak redshifts and becomes broader with increasing layer distance D. We also describe and explain the splitting, shift, and degeneration of the surface plasmon resonant transmission peak theoretically. In addition, to clarify the physical mechanism of the transmission behaviours, we analyse the distributions of electric field and total energy for the three transmission peaks with distance D = 45 nm for the double-layer system. Light transporting behaviours are mostly concentrated in the region of the slits as well as the interspaces of the two layers, and for different resonant wavelengths the electric field and energy distributions are different. It is expected that the results obtained here will be helpful for designing subwavelength metallic grating devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435002,61527823,and 61321063)
文摘We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51225504,61171056,and 91123036)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,China
文摘We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104105,12264028,12304420,and 12364045)the Natural Science Foundation of Jiangxi Province(Grant Nos.20232BAB201040,and 20232BAB211025)+6 种基金the Chenguang Program of Shanghai Education Development FoundationShanghai Municipal Education Commission(Grant No.21CGA55)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011024)the Science and Technology Program of Guangzhou(Grant No.202201011176)the Interdisciplinary Innovation Fund of Nanchang University(Grant No.2019-9166-27060003)the Start-up Funding of Guangdong Polytechnic Normal University(Grant No.2021SDKYA033)the China Scholarship Council(Grant No.202008420045)。
文摘The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)resonant dielectric nanostructures hold great promise,as they enhance nonlinear effects through the resonantly local electromagnetic fields overlapping the chosen nonlinear materials.Here,we propose a method for the enhanced sum-frequency generation(SFG)from etcheless lithium niobate(LiNbO_(3))by utilizing the dual quasi-bound states in the continuum(quasi-BICs)in a one-dimensional resonant grating waveguide structure.Two high-Q guided mode resonances corresponding to the dual quasi-BICs are respectively excited by two near-infrared input beams,generating a strong visible SFG signal with a remarkably high conversion efficiency of 3.66×10^(-2)(five orders of magnitude higher than that of LiNbO_(3)films of the same thickness)and a small full-width at half-maximum less than 0.2 nm.The SFG efficiency can be tuned via adjusting the grating geometry parameter or choosing the input beam polarization combination.Furthermore,the generated SFG signal can be maintained at a fixed wavelength without the appreciable loss of efficiency by selectively exciting the angle-dependent quasi-BICs,even if the wavelengths of input beams are tuned within a broad spectral range.Our results provide a simple but robust paradigm of high-efficiency frequency conversion on an easy-fabricated platform,which may find applications in nonlinear light sources and quantum photonics.
基金supported by the National Basic Research Program of China(No.2009CB326206)the National Natural Science Foundation of China(Nos.61076111,50975266)+2 种基金the Key Laboratory Fund of China(No.9140C1204040909)the Graduate Innovation Project of China (No.20103083)the Fund for Top Young Academic Leaders of Higher Learning Institutions of Shanxi(TYAL),China
文摘An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.
基金supported by the National Science Foundation of China(Grant Nos.11372122,10874122 and 11074070)the Program for Excellent Talents at the University of Guangdong Province(Guangdong Teacher Letter[1010]No.79)
文摘A hybrid quantum architecture was proposed to engineer a localization-delocalization phase transition of light in a two-dimension square lattices of superconducting coplanar waveguide resonators,which are interconnected by current-biased Josephson junction phase qubits.We find that the competition between the on-site repulsion and the nonlocal photonic hopping leads to the Mott insulator-superfluid transition.By using the mean-field approach and the quantum master equation,the phase boundary between these two different phases could be obtained when the dissipative effects of superconducting resonators and phase qubit are considered.The good tunability of the effective on-site repulsion and photon-hopping strengths enable quantum simulation on condensed matter physics and many-body models using such a superconducting resonator lattice system.The experimental feasibility is discussed using the currently available technology in the circuit QED.
基金supported by the UTM’s Flagship Research(Nos.Q.J130000.2426.00G26 and Q.J130000.2509.06H46)
文摘In this paper, a microring resonator(MRR) system using double-series ring resonators is proposed to generate and investigate the Rabi oscillations. The system is made up of silicon-on-insulator and attached to bus waveguide which is used as propagation and oscillation medium. The scattering matrix method is employed to determine the output signal intensity which acts as the input source between two-level Rabi oscillation states, where the increase of Rabi oscillation frequency with time is obtained at the resonant state. The population probability of the excited state is higher and unstable at the optical resonant state due to the nonlinear spontaneous emission process. The enhanced spontaneous emission can be managed by the atom(photon) excitation, which can be useful for atomic related sensors and single-photon source applications.