Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analyse...Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.展开更多
A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with...A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.展开更多
In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device ...In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal(OLT)to the N optical network units(ONUs),and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT.Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform,our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and-16.3 dB,respectively,while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB,respectively.The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit.Its fabrication process is fully compatible with standard clean-room technologies such as photolithography and etching,without any complicated and/or costly approach involved.展开更多
Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling effi...Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.展开更多
A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the p...A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the proposed wavelength converter is analyzed in term of extinction ratio (ER) through numerical simulations. For a typical ER of 10 dB, some key characteristic parameters of the semiconductor optical amplifier (SOA) are designed. With the properly designed parameters, a high quality eye diagram is achievable, indicating that the amplitude fluctuation of the output signal is effectively reduced.展开更多
文摘Based on a parabolically tapered multimode interference (MMI) coupler with a deep-etched SiO2/SiON rib waveguide, a compact wavelength demultiplexer operating at 1.30 and 1.55 μm wavelengths is proposed and analysed by using three-dimensional semi-vectorial finite-difference beam propagation method (3D-SV-FD-BPM). The results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2dB in quasi-TE mode, and 38.4 and 37.8dB in quasi-TM mode at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses below 0.2dB at both wavelengths and in both polarization states, The alternating direction implicit algorithm with the Crank-Nicholson scheme is applied to the discretization of the 3D-SV-FD-BPM formulation along the longitudinal direction. Moreover, a modified FD scheme is constructed to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.
基金This work was supported by the National Natural Science Foundation of China (No. 69990540).
文摘A novel integrated dense wavelength division multiplexing interleaver scheme is presented based on phased-array (PHASAR) wavelength demultiplexer with multimode interference (MMI) couplers. MMI-PHASAR interleaver with simple structure and compact si/e can reali/e narrow channel spacing through simple design procedure. And it is convenient for integration with integrated planar waveguide multiplexer/demultiplexers. A 25/50-GHz MMI-PHASAR interleaver is designed and the transmission characteristic is investigated by beasu propagation method.
文摘In this paper,we have proposed a hybrid optical wavelength demultiplexer and power combiner for a hybrid timeand wavelength-division multiplexing(TWDM)passive optical network(PON),i.e.,a single passive optical device that functions as a 1×N wavelength demultiplexer for distributing the downstream signal in multiple wavelengths from the optical line terminal(OLT)to the N optical network units(ONUs),and simultaneously as an N×1 power combiner for collecting the upstream signal in the same wavelength from the N ONUs to the OLT.Through a design example of a 32 channel hybrid optical wavelength demultiplexer and power combiner on the silicon-on-insulator platform,our numerical simulation result shows that the insertion loss and adjacent channel crosstalk of the downstream wavelength demultiplexer are as low as 4.6 and-16.3 dB,respectively,while the insertion loss and channel non-uniformity of the upstream power combiner can reach 3.5 and 2.1 dB,respectively.The proposed structure can readily be extended to other material platforms such as the silica-based planar lightwave circuit.Its fabrication process is fully compatible with standard clean-room technologies such as photolithography and etching,without any complicated and/or costly approach involved.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0205700 and 2015CB932403)the National Natural Science Foundation of China(Grant Nos.11174062,51472057,and 21790364)
文摘Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot(FP) resonance in the SiO2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters,on-chip signal processing, and integrated nanophotonic circuits.
文摘A novel scheme for all-optical inverted wavelength conversion with 40-Gb/s pseudorandom bit sequences (PRBSs) based on a modified terahertz optical asymmetric demultiplexer (TOAD) is proposed. The performance of the proposed wavelength converter is analyzed in term of extinction ratio (ER) through numerical simulations. For a typical ER of 10 dB, some key characteristic parameters of the semiconductor optical amplifier (SOA) are designed. With the properly designed parameters, a high quality eye diagram is achievable, indicating that the amplitude fluctuation of the output signal is effectively reduced.