This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the of...This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.展开更多
We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic sign...We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.展开更多
A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central fre...A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central frequencies around 1900.0 cm^-1,1600.0 cm^-1,and 1103.4 cm^-1are used for NO,NO2,and NH3detections,respectively,by timedivision multiplex.An open-path multi-pass cell of 60-m optical path length is applied to the instrument for high sensitivity and reducing the response time to less than 1 s.The prototype achieves a sub-ppb detection limit for all the three target gases with an average time of about 100 s.The instrument is installed in the Jiangsu environmental monitoring center to conduct performance tests on ambient air.Continuous 24-hour measurements show good agreement with the results of a reference instrument based on the chemiluminescence technique.展开更多
Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into a...Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.展开更多
A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O tra...A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O transitions near 7185.60 cm^-1 and 7454.45 cm^-1 that are used to enable the measurements along the line-of-sight. According to an iterative algorithm, the gas pressure, temperature and species mole fraction can be measured simultaneously. The new sensor is used in the isolator and extender of the supersonic combustion test facility. In the isolator, the sensor resolves the transient and measured pressure, temperature and H2O mole fraction with accuracies of 2.5%, 8.2%, and 7.2%, respectively. Due to the non-uniform characteristic in the extender, the measured results cannot precisely characterize gas properties, but they can qualitatively describe the distinctions of different zones or the changes or fluctuations of the gas parameters.展开更多
For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressio...For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressions for relationships between Lorentzian linewidth and the separations of first harmonic peak-to-valley and second harmonic zero-crossing were deduced. The transition of CO_2 centered at 4991.25 cm^(-1) was used to verify the optimized spectral fitting method and the analytical expressions. Results showed that the optimized spectra fitting method was able to infer absorption accurately and compute more than 10 times faster than the commonly used numerical fitting procedure. The second harmonic zero-crossing separation method calculated an even 6 orders faster than the spectra fitting without losing any accuracy for Lorentzian dominated cases. Additionally, linewidth calculated through second harmonic zero-crossing was preferred for much smaller error than the first harmonic peak-to-valley separation method. The presented analytical expressions can also be used in on-line optical sensing applications, electron paramagnetic resonance, and further theoretical characterization of absorption lineshape.展开更多
Sensitive detection of acetylene(C_2H_2) is performed by absorption spectroscopy and wavelength modulation spectroscopy(WMS) based on Fiber Fabry–Perot tunable filter(FFP-TF) at 1530.32 nm. After being calibrat...Sensitive detection of acetylene(C_2H_2) is performed by absorption spectroscopy and wavelength modulation spectroscopy(WMS) based on Fiber Fabry–Perot tunable filter(FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating(FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv–400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C_2H_2 detection can be applied in practical applications.展开更多
Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly use...Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly used summation method.A detailed comparison of the three-step method and the summation method,for the wavelength-scanned WMS gas-sensing,was performed with different laser parameters(modulation indexes and scan indexes) and gas properties(pressures and concentrations).Simulation results show that the accuracy of the predicted gas parameters is strongly limited by the RWR characterization with large modulation index and high gas pressure conditions.Both fitting residuals of RWR and errors of predicted gas parameters from the recently proposed three-step method are nearly 2 orders of magnitude smaller than those from the summation method.In addition,the three-step method is further improved by introducing a coupling term for the 2^(nd) harmonic amplitude.Experiments with CO_(2) absorption transition at 6976.2026 cm^(-1) were conducted and validated the simulation analysis.The modified-three-step method presents an improved accuracy in RWR description with at least 5% smaller fitting residual for all conditions compared with the three-step method,although the deviation of the deduced CO_(2) concentrations between these two methods does not exceed 0.2%.展开更多
Studies on the kinetics of gas-phase chemical reactions currently rely on calculations or simulations and lack simple,fast,and accurate direct measurement methods.We developed a tunable laser molecular absorption spec...Studies on the kinetics of gas-phase chemical reactions currently rely on calculations or simulations and lack simple,fast,and accurate direct measurement methods.We developed a tunable laser molecular absorption spectroscopy measurement system to achieve direct measurements of such reactions by using wavelength modulated spectroscopy and performed online measurements and diagnostics of molecular concentration,reaction temperature,and pressure change during the redox reaction of ozone with nitrogen oxides(NOx)with 0.1 s temporal resolution.This study provides a promising diagnostic tool for studying gas-phase chemical reaction kinetics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62005108 and 62205134)the National Key Research and Development Program of China(Grant No.2022YFC2807701)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant Nos.20KJB140009 and 21KJB140008)。
文摘This study established a novel method for the simultaneous detection of two-component gases.Radio frequency(RF)white noise disturbance laser current and wavelength modulation were simultaneously used to improve the off-axis integrated cavity output spectroscopy technique,and a high-precision dual modulation OA-ICOS(RF-WM-OA-ICOS)system was established.The two laser beams were coupled into one laser beam that was applied incident to the cavity of RF-WM-OA-ICOS system.The second harmonic signals of CH_(4)and CO_(2)gas simultaneously appeared in the rising or falling edge of a triangular wave.This method was used to measure CH_(4)and CO_(2)with different concentrations.The results indicated that the proposed system has high stability and can accurately and simultaneously measure the concentrations of CH_(4)and CO_(2),with an optimal integration time of 220 s.The minimum detection limit was 10 ppb for CH_(4)and 1.5 ppm for CO_(2).The corresponding noise equivalent absorption sensitivity values were calculated as 2.67×10^(-13)cm^(-1)·Hz^(-1/2)and 5.18×10^(-11)cm^(-1)·Hz^(-1/2),respectively.The proposed dual-component gas simultaneous detection method can also be used for high-precision simultaneous detection of other gases.Therefore,this study may serve as a reference for developing portable multicomponent gas analyzers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51176085 and 51206086)
文摘We derive the expressions of the first and second harmonic signals on the basis of absorption spectral and lock-in theories, and determine the gas concentration according to the ratio of second and first harmonic signals. It is found that the X and Y components of the harmonic signals are influenced by the phase shift between the detection and reference signal, and the phase shift can be any value in a range from 0 to 2π, which is different from the results obtained previously. Meanwhile, an additional item caused by the residual amplitude modulation will make a great contribution to the second harmonic signal, and may not be neglected under low absorbance conditions. Theoretical analysis indicates that subtracting back-ground signal from the second harmonic signal can remove the influence of this item, and can improve the measurement accuracy of gas concentration. On this basis, we select the transition of CO2 at 6527.64 cm-1 to analyse the approximation errors during the derivation by numerical simulation and then measure the CO2 concentration under low absorbance conditions, with absorbance varying from 1‰ to 6‰.
基金Project supported by the National Key Scientific Instrument and Equipment Development,China(Grant No.2014YQ060537)the National Key Research and Development Program,China(Grant No.2016YFC0201103)
文摘A compact prototype based on mid-infrared wavelength modulation spectroscopy(WMS)is developed for the simul-taneous monitoring of NO,NO2,and NH3 in the urban area.Three quantum cascade lasers(QCLs)with central frequencies around 1900.0 cm^-1,1600.0 cm^-1,and 1103.4 cm^-1are used for NO,NO2,and NH3detections,respectively,by timedivision multiplex.An open-path multi-pass cell of 60-m optical path length is applied to the instrument for high sensitivity and reducing the response time to less than 1 s.The prototype achieves a sub-ppb detection limit for all the three target gases with an average time of about 100 s.The instrument is installed in the Jiangsu environmental monitoring center to conduct performance tests on ambient air.Continuous 24-hour measurements show good agreement with the results of a reference instrument based on the chemiluminescence technique.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the Chinese Academy of Sciences(Grant No.YZ201315)the National Natural Science Foundation of China(Grant Nos.11204320,41405034,and 11204319)
文摘Sensitive detection of hydrogen sulfide(H2S) has been performed by means of wavelength modulation spectroscopy(WMS) near 1.578 μm. With the scan amplitude and the stability of the background baseline taken into account, the response time is 4 s for a 0.8 L multi-pass cell with a 56.7 m effective optical path length. Moreover, the linearity has been tested in the 0–50 ppmv range. The detection limit achievable by the Allan variance is 224 ppb within 24 s under room temperature and ambient pressure conditions. This tunable diode laser absorption spectroscopy(TDLAS) system for H2 S detection has the feasibility of real-time online monitoring in many applications.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.21403299)
文摘A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O transitions near 7185.60 cm^-1 and 7454.45 cm^-1 that are used to enable the measurements along the line-of-sight. According to an iterative algorithm, the gas pressure, temperature and species mole fraction can be measured simultaneously. The new sensor is used in the isolator and extender of the supersonic combustion test facility. In the isolator, the sensor resolves the transient and measured pressure, temperature and H2O mole fraction with accuracies of 2.5%, 8.2%, and 7.2%, respectively. Due to the non-uniform characteristic in the extender, the measured results cannot precisely characterize gas properties, but they can qualitatively describe the distinctions of different zones or the changes or fluctuations of the gas parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505142)the Tianjin Natural Science Foundation(Grant No.16JCQNJC02100)
文摘For absorption linewidth inversion with wavelength modulation spectroscopy(WMS), an optimized WMS spectral line fitting method was demonstrated to infer absorption linewidth effectively, and the analytical expressions for relationships between Lorentzian linewidth and the separations of first harmonic peak-to-valley and second harmonic zero-crossing were deduced. The transition of CO_2 centered at 4991.25 cm^(-1) was used to verify the optimized spectral fitting method and the analytical expressions. Results showed that the optimized spectra fitting method was able to infer absorption accurately and compute more than 10 times faster than the commonly used numerical fitting procedure. The second harmonic zero-crossing separation method calculated an even 6 orders faster than the spectra fitting without losing any accuracy for Lorentzian dominated cases. Additionally, linewidth calculated through second harmonic zero-crossing was preferred for much smaller error than the first harmonic peak-to-valley separation method. The presented analytical expressions can also be used in on-line optical sensing applications, electron paramagnetic resonance, and further theoretical characterization of absorption lineshape.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61172047 and 61071025)
文摘Sensitive detection of acetylene(C_2H_2) is performed by absorption spectroscopy and wavelength modulation spectroscopy(WMS) based on Fiber Fabry–Perot tunable filter(FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating(FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv–400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C_2H_2 detection can be applied in practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51906120 and 11972213)China Postdoctoral Science Foundation(Grant Nos.2018M640125 and 2019T120088)the National Basic Research Program of China(Grant No.2016YFC0201104)。
文摘Our recently proposed three-step method showed the promising potential to improve the accuracy of relative wavelength response(RWR) characterization in the wavelength-modulation spectroscopy(WMS) over the commonly used summation method.A detailed comparison of the three-step method and the summation method,for the wavelength-scanned WMS gas-sensing,was performed with different laser parameters(modulation indexes and scan indexes) and gas properties(pressures and concentrations).Simulation results show that the accuracy of the predicted gas parameters is strongly limited by the RWR characterization with large modulation index and high gas pressure conditions.Both fitting residuals of RWR and errors of predicted gas parameters from the recently proposed three-step method are nearly 2 orders of magnitude smaller than those from the summation method.In addition,the three-step method is further improved by introducing a coupling term for the 2^(nd) harmonic amplitude.Experiments with CO_(2) absorption transition at 6976.2026 cm^(-1) were conducted and validated the simulation analysis.The modified-three-step method presents an improved accuracy in RWR description with at least 5% smaller fitting residual for all conditions compared with the three-step method,although the deviation of the deduced CO_(2) concentrations between these two methods does not exceed 0.2%.
基金supported in part by the National Natural Science Foundation of China(No.52176064)Tianjin Natural Science Foundation(No.20JCYBJC00160).
文摘Studies on the kinetics of gas-phase chemical reactions currently rely on calculations or simulations and lack simple,fast,and accurate direct measurement methods.We developed a tunable laser molecular absorption spectroscopy measurement system to achieve direct measurements of such reactions by using wavelength modulated spectroscopy and performed online measurements and diagnostics of molecular concentration,reaction temperature,and pressure change during the redox reaction of ozone with nitrogen oxides(NOx)with 0.1 s temporal resolution.This study provides a promising diagnostic tool for studying gas-phase chemical reaction kinetics.