A 13-channel, InP-based arrayed waveguide grating (AWG) is designed and fabricated in which the on-chip loss of the central channel is about -5 dB and the crosstalk is less than -23 dB in the center of the spectrum ...A 13-channel, InP-based arrayed waveguide grating (AWG) is designed and fabricated in which the on-chip loss of the central channel is about -5 dB and the crosstalk is less than -23 dB in the center of the spectrum response. However, the central wavelength and channel spacing are deviated from the design values. To improve their accuracy, an optimized design is adopted to compensate the process error. As a result, the central wavelength 1549.9 nm and channel spacing 1.59 nm are obtained in the experiment, while their design values are 1549.32 nm and 1.6 nm, respectively. The route capability and thermo-optic characteristic of the AWG are also discussed in detail.展开更多
Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject t...Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject to minimization of the channel blocking and provisional requests satisfying the limits due to accumulative linear dispersion effects over the hops. This paper proposes a routing and wavelength assignment scheme for DWDM long-haul optical networks that includes routing, assignment and reservation of different wavelength channels operating under the Generalized Multiprotocol Label Switching (GMPLS) environment. The GMPLS framework can offer an approach to implement IP over DWDM with variable weighting assignments of routes based on the limitations due to residual dispersion accumulated on the lightwave path. The modeling is implemented under the framework of an object-oriented modeling platform OMNeT++. Network performance tests are evaluated based mainly on a long-haul terrestrial fiber mesh network composed of as well as three topologies structured as chain, ring, and mesh configurations. Blocking probability of lightpath connection requests are examined with the average link utilization in the network employing variable number of wavelength channels in association with the limits of route distance due to linear chromatic and polarization mode dispersion effects.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant Nos.2011AA010303 and 2013AA031401)the National Natural Science Foundation of China(Grant No.61090390)
文摘A 13-channel, InP-based arrayed waveguide grating (AWG) is designed and fabricated in which the on-chip loss of the central channel is about -5 dB and the crosstalk is less than -23 dB in the center of the spectrum response. However, the central wavelength and channel spacing are deviated from the design values. To improve their accuracy, an optimized design is adopted to compensate the process error. As a result, the central wavelength 1549.9 nm and channel spacing 1.59 nm are obtained in the experiment, while their design values are 1549.32 nm and 1.6 nm, respectively. The route capability and thermo-optic characteristic of the AWG are also discussed in detail.
文摘Given a set of lightpath connection requests in an all-10 Gb/s optical dense wavelength division multiplexed (DWDM) Ethernet network, lightpaths are designed. In addition the wavelength channels are assigned subject to minimization of the channel blocking and provisional requests satisfying the limits due to accumulative linear dispersion effects over the hops. This paper proposes a routing and wavelength assignment scheme for DWDM long-haul optical networks that includes routing, assignment and reservation of different wavelength channels operating under the Generalized Multiprotocol Label Switching (GMPLS) environment. The GMPLS framework can offer an approach to implement IP over DWDM with variable weighting assignments of routes based on the limitations due to residual dispersion accumulated on the lightwave path. The modeling is implemented under the framework of an object-oriented modeling platform OMNeT++. Network performance tests are evaluated based mainly on a long-haul terrestrial fiber mesh network composed of as well as three topologies structured as chain, ring, and mesh configurations. Blocking probability of lightpath connection requests are examined with the average link utilization in the network employing variable number of wavelength channels in association with the limits of route distance due to linear chromatic and polarization mode dispersion effects.