The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wav...The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.展开更多
Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal...Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.展开更多
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina...Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.展开更多
Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected an...Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.展开更多
To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
A noise reduction method for infrared detector output signal is studied during dynamic calibration of thermocou- pie. Firstly, the deficiency of the classical filter method is analyzed and the application of the wavel...A noise reduction method for infrared detector output signal is studied during dynamic calibration of thermocou- pie. Firstly, the deficiency of the classical filter method is analyzed and the application of the wavelet analysis is introduced for signal de-noising during the dynamic testing. Secondly, the theoretical basis of wavelet analysis, the choice of wavelet base and the determination of decomposed series and threshold are analyzed. Finally, the de-noising experiment for infrared detector signal is carried out on the Matlab platform. The results indicate the proposed wavelet de-noising method is effective to remove fixed frequency and high-frequency noise; furthermore, good synchronization is achieved between the de-noised signal and the useful signal components in the original signal, which is of great significance to thermocouple modeling analys- is.展开更多
Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result S...On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.展开更多
This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Tra...This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).展开更多
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ...A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.展开更多
Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pep...Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.展开更多
According to the speckle feature in Optical coherence tomography(OCT),images with speckleindicate not only noise but also signals,an improved wavelet hierarchical threshold filter(IWHTF)method is proposed.At first,a m...According to the speckle feature in Optical coherence tomography(OCT),images with speckleindicate not only noise but also signals,an improved wavelet hierarchical threshold filter(IWHTF)method is proposed.At first,a modified hierarchical threshold-selected algorithm isused to prevent signals from being removed by asssing suitable thresholds for different noiselevels,Then,an improved wavelet threshold function based on two traditional threshold fumnc.tions is proposed to trade-ff betwen speckle removing and sharpness degradation.The de-noising results of an OCT finger skin image shows that the IWHTF method obtains betterobjective evaluation metrics and visual image quality improvement,Whenαa=0.2,β=5.0 andK=1.2,the improved method can achieve 9.58 dB improvement in signal-to-noise ratio,withsharpnesdegraded by 3.81%.展开更多
A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery ...A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.展开更多
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con...The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).展开更多
In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on...In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect.展开更多
Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied wi...Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied widely. Compared with traditional 2-band wavelet,3-band wavelet has advantages in many aspects. According to this theory,an adaptive signal de-noising method in 3-band wavelet domain based on nonparametric adaptive estimation is proposed. The experimental results show that in 3-band wavelet domain,the proposed method represents better characteristics than Donoho method in protecting detail and improving the signal-to-noise ratio of reconstruction signal.展开更多
Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus...Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.展开更多
This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can co...This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.展开更多
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
文摘The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.
基金funded by National Natural Science Foundation of China(61201391)。
文摘Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.
基金National Natural Science Foundation of China(No.71961016)Planning Fund for the Humanities and Social Sciences of the Ministry of Education(Nos.15XJAZH002,18YJAZH148)Natural Science Foundation of Gansu Province(No.18JR3RA125)。
文摘Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.
文摘Based on wavelet transform theory,a method for signal de-noising and singularity detection and elimination is proposed,which can reduce the noises and express local singularity.Each singularity can also be detected and located through the local modulus maxima of wavelet transform.Simulation experiments are conducted with MATLAB software.The experimental results demonstrate that the method proposed in this paper is effective and feasible.
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
文摘A noise reduction method for infrared detector output signal is studied during dynamic calibration of thermocou- pie. Firstly, the deficiency of the classical filter method is analyzed and the application of the wavelet analysis is introduced for signal de-noising during the dynamic testing. Secondly, the theoretical basis of wavelet analysis, the choice of wavelet base and the determination of decomposed series and threshold are analyzed. Finally, the de-noising experiment for infrared detector signal is carried out on the Matlab platform. The results indicate the proposed wavelet de-noising method is effective to remove fixed frequency and high-frequency noise; furthermore, good synchronization is achieved between the de-noised signal and the useful signal components in the original signal, which is of great significance to thermocouple modeling analys- is.
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration (IS201126025)The Basis Research Foundation of Key laboratory of Geospace Environment & Geodesy Ministry of Education,China (10-01-09)
文摘On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.
文摘This paper introduces a new method to separate PD1 from other disturbing signals present on the high voltage genera-tors and motors. The method is based on combination of a pattern classifier, the Discrete Wavelet Transform (DWT), to de-noise PD and Time-Of-Arrival method to separate PD sources. Furthermore, it will be shown that it can recognize PD sources including rotating machine’s internal and external discharge pulses (e.g. on the bus bar).
基金supported by Shanghai Science and Technology Commission Innovation Action Plan(08DZ1205708)
文摘A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well.
文摘Brain magnetic resonance images(MRI)are used to diagnose the different diseases of the brain,such as swelling and tumor detection.The quality of the brain MR images is degraded by different noises,usually salt&pepper and Gaussian noises,which are added to the MR images during the acquisition process.In the presence of these noises,medical experts are facing problems in diagnosing diseases from noisy brain MR images.Therefore,we have proposed a de-noising method by mixing concatenation,and residual deep learning techniques called the MCR de-noising method.Our proposed MCR method is to eliminate salt&pepper and gaussian noises as much as possible from the brain MRI images.The MCR method has been trained and tested on the noise quantity levels 2%to 20%for both salt&pepper and gaussian noise.The experiments have been done on publically available brain MRI image datasets,which can easily be accessible in the experiments and result section.The Structure Similarity Index Measure(SSIM)and Peak Signal-to-Noise Ratio(PSNR)calculate the similarity score between the denoised images by the proposed MCR method and the original clean images.Also,the Mean Squared Error(MSE)measures the error or difference between generated denoised and the original images.The proposed MCR denoising method has a 0.9763 SSIM score,84.3182 PSNR,and 0.0004 MSE for salt&pepper noise;similarly,0.7402 SSIM score,72.7601 PSNR,and 0.0041 MSE for Gaussian noise at the highest level of 20%noise.In the end,we have compared the MCR method with the state-of-the-art de-noising filters such as median and wiener de-noising filters.
基金supported by National Nature Science Foundation of China(Nos.61378090,61421002,61505036,61327004,61435003 and 61675226)the Sichuan Province International Cooperative Project(No.2015HH0056)+3 种基金the National Key R&D Program of China(Nos.2016YFF0102000,2016YFF0102003)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB02060000)the Frontier Science Research Project of the Chinese Academy of Sciences(No.QYZDB-SSW-JSC03)the Jiangsu Province Science Fund for Distinguished Young Scholars(No.BK20060010).
文摘According to the speckle feature in Optical coherence tomography(OCT),images with speckleindicate not only noise but also signals,an improved wavelet hierarchical threshold filter(IWHTF)method is proposed.At first,a modified hierarchical threshold-selected algorithm isused to prevent signals from being removed by asssing suitable thresholds for different noiselevels,Then,an improved wavelet threshold function based on two traditional threshold fumnc.tions is proposed to trade-ff betwen speckle removing and sharpness degradation.The de-noising results of an OCT finger skin image shows that the IWHTF method obtains betterobjective evaluation metrics and visual image quality improvement,Whenαa=0.2,β=5.0 andK=1.2,the improved method can achieve 9.58 dB improvement in signal-to-noise ratio,withsharpnesdegraded by 3.81%.
基金Supported by the Education Foundation of Anhui Province (No.2002kj003)
文摘A method of single channel speech enhancement is proposed by de-noising using stationary wavelet transform. The approach developed herein processes multi-resolution wavelet coefficients individually and then recovery signal is reconstructed. The time invariant characteristics of stationary wavelet transform is particularly useful in speech de-noising. Experimental results show that the proposed speech enhancement by de-noising algorithm is possible to achieve an excellent balance between suppresses noise effectively and preserves as many target characteristics of original signal as possible. This de-noising algorithm offers a superior performance to speech signal noise suppress.
基金supported by the National Natural Science Foundation of China(61401389)
文摘The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR).
文摘In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Ministry of Education (No.2004.176.4)the Natural Science of Foundation Shandong Province (No.Z2004G01).
文摘Wavelet de-noising has been well known as an important method of signal de-noising. Recently,most of the research efforts about wavelet de-noising focus on how to select the threshold,where Donoho method is applied widely. Compared with traditional 2-band wavelet,3-band wavelet has advantages in many aspects. According to this theory,an adaptive signal de-noising method in 3-band wavelet domain based on nonparametric adaptive estimation is proposed. The experimental results show that in 3-band wavelet domain,the proposed method represents better characteristics than Donoho method in protecting detail and improving the signal-to-noise ratio of reconstruction signal.
基金partly supported by the National Natural Science Foundation of China(Jianhua Wu,Grant No.62041106).
文摘Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.
文摘This paper considers the problem of noise cancellation for the magnetic flux leakage (MFL) data obtained from the inspection of oil pipelines. MFL data is contaminated by various sources of noise, and the noise can considerably reduce the detectability of flaw signals in MFL data. This paper presents a new de-noising approach for removing the system noise contained in the MFL data by using the coefficients de-noising with wavelet transform. Experimental results are presented to demonstrate the advantages of this de-noising approach over the conventional wavelet de-noising method.
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.