Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple v...Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple variable function estimation wavelet networks over single path asynchronous channel and space-time channel respectively is presented. Excellent localization characteristics of wavelet functions in both time and frequency domains allowed hierarchical multiple resolution learning of input-output data mapping. The ma thematic frame of the neural networks and error back ward propagation algorithm are introduced. The complexity of the multiuser detector only depends on that of wavelet networks. With numerical simulations and performance analysis, it indicates that the multiuser detector has excellent performance in eliminating MAI and near-far resistance.展开更多
In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study h...In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.展开更多
基金This project was supported by the National Natural Science Foundation of China (60073053 60133010).
文摘Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple variable function estimation wavelet networks over single path asynchronous channel and space-time channel respectively is presented. Excellent localization characteristics of wavelet functions in both time and frequency domains allowed hierarchical multiple resolution learning of input-output data mapping. The ma thematic frame of the neural networks and error back ward propagation algorithm are introduced. The complexity of the multiuser detector only depends on that of wavelet networks. With numerical simulations and performance analysis, it indicates that the multiuser detector has excellent performance in eliminating MAI and near-far resistance.
文摘In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.