Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals i...Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize ...It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.展开更多
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi...In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.展开更多
A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and m...A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and mass knowledge of experts. Comparing with conventional off-line yarn test, the new system can find the quality defects of yarn online in time and compensate for the lack of expert knowledge in manual analysis. It can save a lot of yarn wasted in off-line test and improve product quality. By using laser sensor to sample the diameter signal of yarn and doing wavelet analysis and FFT to extract fault characteristics, a set of reasoning mechanism is established to analyze yarn quality and locate the fault origination. The experimental results show that new system can do well in monitoring yarn quality online comparing with conventional off-line yarn test. It can test the quality of yarn in real-time with high efficiency and analyze the fault reason accurately. It is very useful to apply this new system to upgrade yarn quality in cotton textile industry at present.展开更多
Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't s...Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.展开更多
In this paper, we present a quotient space approximation model of multiresolution signal analysis and discuss the properties and characteristics of the model. Then the comparison between wavelet transform and the quot...In this paper, we present a quotient space approximation model of multiresolution signal analysis and discuss the properties and characteristics of the model. Then the comparison between wavelet transform and the quotient space approximation is made. First, when wavelet transform is viewed from the new quotient space approximation perspective, it may help us to gain an insight into the essence of multiresolution signal analysis. Second, from the similarity between wavelet and quotient space approximations, it is possible to transfer the rich wavelet techniques into the latter so that a new way for multiresolution analysis may be found.展开更多
基金This project was supported by the National Natural Science Foundation of China (60672034)the Research Fund for the Doctoral Program of Higher Education(20060217021)the Natural Science Foundation of Heilongjiang Province of China (ZJG0606-01)
文摘Sonar images have complex background, low contrast, and deteriorative edges; these characteristics make it difficult for researchers to dispose the sonar objects. The multi-resolution analysis represents the signals in different scales efficiently, which is widely used in image processing. Wavelets are successful in disposing point discontinuities in one dimension, but not in two dimensions. The finite Ridgelet transform (FRIT) deals efficiently with the singularity in high dimension. It presents three improved denoising approaches, which are based on FRIT and used in the sonar image disposal technique. By experiment and comparison with traditional methods, these approaches not only suppress the artifacts, but also obtain good effect in edge keeping and SNR of the sonar image denoising.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
文摘It has been shown that much dynamic information is hidden in the pressure fluctuation signals of a gas-solid fluidized bed. Unfortunately, due to the random and capricious nature of this signal, it is hard to realize reliable analysis using traditional signal processing methods such as statistical analysis or spectral analysis, which is done in Fourier domain. Information in different frequency band can be extracted by using wavelet analysis. On the evidence of the composition of the pressure fluctuation signals, energy of low frequency (ELF) is proposed to show the transition of fluidized regimes from bubbling fluidization to turbulent fluidization. Plots are presented to describe the fluidized bed's evolution to help identify the state of different flow regimes and provide a characteristic curve to identify the fluidized status effectively and reliably.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61275010,61201237)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,No.HEUCF120805)
文摘In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.
文摘A new online system of monitoring yarn quality and fault diagnosis is presented. This system integrates the technologies of sensor, signal process, communication, network, computer, control, instrument structure and mass knowledge of experts. Comparing with conventional off-line yarn test, the new system can find the quality defects of yarn online in time and compensate for the lack of expert knowledge in manual analysis. It can save a lot of yarn wasted in off-line test and improve product quality. By using laser sensor to sample the diameter signal of yarn and doing wavelet analysis and FFT to extract fault characteristics, a set of reasoning mechanism is established to analyze yarn quality and locate the fault origination. The experimental results show that new system can do well in monitoring yarn quality online comparing with conventional off-line yarn test. It can test the quality of yarn in real-time with high efficiency and analyze the fault reason accurately. It is very useful to apply this new system to upgrade yarn quality in cotton textile industry at present.
文摘Fast wavelet multi-resolution analysis (wavelet MRA) provides a effective tool for analyzing and canceling disturbing components in original signal. Because of its exponential frequency axis, this method isn't suitable for extracting harmonic components. The modified exponential time-frequency distribution ( MED) overcomes the problems of Wigner distribution( WD) ,can suppress cross-terms and cancel noise further more. MED provides high resolution in both time and frequency domains, so it can make out weak period impulse components fmm signal with mighty harmonic components. According to the 'time' behavior, together with 'frequency' behavior in one figure,the essential structure of a signal is revealed clearly. According to the analysis of algorithm and fault diagnosis example, the joint of wavelet MRA and MED is a powerful tool for fault diagnosis.
文摘In this paper, we present a quotient space approximation model of multiresolution signal analysis and discuss the properties and characteristics of the model. Then the comparison between wavelet transform and the quotient space approximation is made. First, when wavelet transform is viewed from the new quotient space approximation perspective, it may help us to gain an insight into the essence of multiresolution signal analysis. Second, from the similarity between wavelet and quotient space approximations, it is possible to transfer the rich wavelet techniques into the latter so that a new way for multiresolution analysis may be found.