The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "...In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.展开更多
An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP alg...An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP algorithms and PLS. The analytical results indicated that the concentration predicted with ANN is better than that with PLS. The average prediction errors for ethane, propane and propylene were 5.11%, 8.28%, 2.64%, respectively.展开更多
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time...This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various charac...A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.展开更多
In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic ...In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images.The existing algorithms have drawbacks with respect to their accuracy,efficiency,and limited learning processes.To address these issues,we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast,2D-discrete wavelet transformation(2D-DWT)to extract the features,probabilistic principal component analysis(PPCA)and linear discriminant analysis(LDA)to normalize and reduce the features,and a feed-forward neural network(FNN)and modified particle swarm optimization(MPSO)with ant colony optimization(ACO)to improve the accuracy,stability,and overcome fitting issues in the classification of brain magnetic resonance images.The proposed method achieves better results than other existing algorithms.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method bas...According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.展开更多
This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvant...This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.展开更多
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an...Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.展开更多
Timely and accurate gas load forecasting is critical for optimal scheduling under tight winter gas supply conditions.Under the background of the implementation of“coal-to-gas”for winter heating in rural areas of Nor...Timely and accurate gas load forecasting is critical for optimal scheduling under tight winter gas supply conditions.Under the background of the implementation of“coal-to-gas”for winter heating in rural areas of North China and the sufficient field research,this paper proposes a correction algorithm for daily average temperature based on the cumulative effect of temperature and a set of combined forecasting models for gas load forecasting based on machine learning and introduces its application through a detailed case study.In order to solve the problems of forecasting performance degradation and complexity increase caused by too many influencing factors,a combined forecasting model back-propagation-improved complete ensemble empirical mode decomposition with adaptive-noise-gated recurrent unit based on residual sequence analysis is proposed.Back propagation(BP)neural network is used to analyze the main influencing factors,so that the secondary influencing factors are reflected in the residual sequence generated by the forecasting.After decomposition,reconstruction,and re-forecast,the mean absolute percentage error(MAPE)of the combined models for the daily gas load in the case study has been controlled under 1.9%,which is significantly improved compared with each single algorithm.The forecasting error before and after the temperature correction are also compared.It is found that the MAPE with the temperature correction is reduced by 1.7%,which reflects the effectiveness of the temperature correction to eliminate the impact of temperature cumulative effect and its contribution to the improvement of the forecasting accuracy for the combined forecasting models.展开更多
There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption a...There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.展开更多
This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distr...This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.展开更多
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金This work was financially supported by the Science Council of Taiwan(Grant No.NSC90-2611-M-110-012)
文摘In maltiresolution analysis (MRA) by wavelet function Daubechies (db), we decompose the signal to two parts, the low and high frequency content. The high-frequency content of the data is removed first and a new "de-noise" signal is reconstructed by using inverse wavelet transform. The wavelet spectrum and harmonic analysis were used to analyze the characteristics of tidal data before constructing the input and output structure of ANN model. That is, the concept of tidal constituent phase-lags was introduced and the new "de-noise" signal was used as the input data set of ANN and the forecasting accuracy of ANN model is significantly improved.
文摘An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP algorithms and PLS. The analytical results indicated that the concentration predicted with ANN is better than that with PLS. The average prediction errors for ethane, propane and propylene were 5.11%, 8.28%, 2.64%, respectively.
文摘This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox. Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples. The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity. Furthermore, the method performs prediction by a self-developed WNN toolbox. Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically. The method is characterized by simplicity, flexibility, small data scale, fast convergence rate and high prediction precision. In addition, the method is also characterized by certainty and repeatability of the predicted results. The effectiveness of this method is confirmed by simulation results. Therefore, this method will exert practical significance on promoting the application of WNN.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
基金Supported by the National Natural Science Foundation of China (No.60672003)Shandong Key Technology R&D Program (2004GG2205016).
文摘A slotted orifice has many superiorities over a standard orifice. For single-phase flow measurement, its flow coefficient is insensitive to the upstream velocity profile. For two phase flow measurement, various characteristics of its differential pressure (DP) are stable and closely correlated with the mass flow rate of gas and liquid. The complex relationships between the signal features and the two-phase flow rate are established through the use of a back propagation (BP) neural network. Experiments were carried out in the horizontal tubes with 50ram inner diameter, ooerated with water flow rate in the range of 0.2m^3·h^-1 to 4m3·h^-1, gas flow rate in the range of 100m^3·h^-1 to 1000m^3·h^-1, and pressure at 400kPa and 850kPa respectively, where the temperature is ambient temperature. This article includes the principle of wet gas meter development, the experimental matrix, the signal processing techniques and the achieved results. On the basis of the results it is suggested that the slotted orifice couple with a trained neural network may provide a simple but efficient solution to the wet gas meter development.
文摘In recent years,the development in the field of computer-aided diagnosis(CAD)has increased rapidly.Many traditional machine learning algorithms have been proposed for identifying the pathological brain using magnetic resonance images.The existing algorithms have drawbacks with respect to their accuracy,efficiency,and limited learning processes.To address these issues,we propose a pathological brain tumour detection method that utilizes the Weiner filter to improve the image contrast,2D-discrete wavelet transformation(2D-DWT)to extract the features,probabilistic principal component analysis(PPCA)and linear discriminant analysis(LDA)to normalize and reduce the features,and a feed-forward neural network(FNN)and modified particle swarm optimization(MPSO)with ant colony optimization(ACO)to improve the accuracy,stability,and overcome fitting issues in the classification of brain magnetic resonance images.The proposed method achieves better results than other existing algorithms.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
文摘According to the time-frequency localization characteristic of the wavelet transform (WT)and the nonlinear reflection of the neural network,this paper presents the neural network data fusion fault diagnosis method based on wavelet transform.The network construction and the signal processing steps are introduced in detail.The correct result was attained by using this method in rotary machinery fault diagnosis.It proves the method efficient in fault diagnosis, which is expected to have a wide application.
文摘This paper introduces the identification of the defects on the fabric by using two-double neural network and wavelet analysis. The purpose is to fit for the automatic cloth inspection system and to avoid the disadvantages of traditional human inspection. Firstly, training the normal fabric to acquire its characteristics and then using the BP neural network to tell the normal fabric apart from the one with defects. Secondly, doing the two-dimeusional discrete wavelet transformation based on the image of the defects, then wiping off the proper characteristics of the fabric, and identifying the defects utilizing the trained BP neural network. It is proved that this method is of high speed and accuracy. It comes up to the requirement of automatic cloth inspection.
基金supported by the National Natural Science Foundation of China(No.41906169)the PLA Academy of Military Sciences.
文摘Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively.
基金financial support from Science and Technology Major Project of Inner Mongolia Autonomous Region of China(2021ZD0038).
文摘Timely and accurate gas load forecasting is critical for optimal scheduling under tight winter gas supply conditions.Under the background of the implementation of“coal-to-gas”for winter heating in rural areas of North China and the sufficient field research,this paper proposes a correction algorithm for daily average temperature based on the cumulative effect of temperature and a set of combined forecasting models for gas load forecasting based on machine learning and introduces its application through a detailed case study.In order to solve the problems of forecasting performance degradation and complexity increase caused by too many influencing factors,a combined forecasting model back-propagation-improved complete ensemble empirical mode decomposition with adaptive-noise-gated recurrent unit based on residual sequence analysis is proposed.Back propagation(BP)neural network is used to analyze the main influencing factors,so that the secondary influencing factors are reflected in the residual sequence generated by the forecasting.After decomposition,reconstruction,and re-forecast,the mean absolute percentage error(MAPE)of the combined models for the daily gas load in the case study has been controlled under 1.9%,which is significantly improved compared with each single algorithm.The forecasting error before and after the temperature correction are also compared.It is found that the MAPE with the temperature correction is reduced by 1.7%,which reflects the effectiveness of the temperature correction to eliminate the impact of temperature cumulative effect and its contribution to the improvement of the forecasting accuracy for the combined forecasting models.
基金Financial support from National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05017-004)
文摘There exists large space to save energy of high-sulfur natural gas purification process.The multi-objective optimization problem has been investigated to effectively reduce the total comprehensive energy consumption and further improve the production rate of purified gas.A steady-state simulation model of high-sulfur natural gas purification process has been set up by using ProMax.Seven key operating parameters of the purification process have been determined based on the analysis of comprehensive energy consumption distribution.To solve the problem that the process model does not converge in some conditions,back-propagation(BP)neural network has been applied to substitute the simulation model to predict the relative parameters in the optimization model.The uniform design method and the table U21(107)have been applied to design the experiment points for training and testing BP model.High prediction accuracy can be achieved by using the BP model.Nondominated sorting genetic algorithm-II has been developed to optimize the two objectives,and 100 Pareto optimal solutions have been obtained.Three optimal points have been selected and evaluated further.The results demonstrate that the total comprehensive energy consumption is reduced by 13.4%and the production rate of purified gas is improved by 0.2%under the optimized operating conditions.
文摘This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.