期刊文献+
共找到5,034篇文章
< 1 2 250 >
每页显示 20 50 100
Approximation to NLAR(p) with Wavelet Neural Networks
1
作者 朱石焕 吴曦 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期94-98,共5页
Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximati... Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied. 展开更多
关键词 wavelet neural networks orthonormal scaling functions NLAR(p)
下载PDF
基于遥感多参数和IPSO-WNN的冬小麦单产估测
2
作者 王鹏新 李明启 +3 位作者 张悦 刘峻明 朱健 张树誉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期154-163,共10页
冬小麦是我国的主要粮食作物之一。为进一步准确地估测冬小麦产量,以陕西省关中平原为研究区域,选取冬小麦主要生育期与水分胁迫和光合作用等密切相关的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感... 冬小麦是我国的主要粮食作物之一。为进一步准确地估测冬小麦产量,以陕西省关中平原为研究区域,选取冬小麦主要生育期与水分胁迫和光合作用等密切相关的条件植被温度指数(VTCI)、叶面积指数(LAI)和光合有效辐射吸收比率(FPAR)作为遥感特征参数,采用改进的粒子群算法优化小波神经网络(IPSO-WNN)以改善梯度下降方法易陷入局部最优的缺陷,并构建冬小麦产量估测模型。结果表明,IPSO-WNN模型的决定系数R2为0.66,平均绝对百分比误差(MAPE)为7.59%,相比于BPNN(R2=0.46,MAPE为11.80%)与WNN(R2=0.52,MAPE为9.80%),IPSO-WNN能够进一步提高模型的精度、增强模型的鲁棒性。采用灵敏度分析的方法探究对冬小麦产量影响较大的输入参数,结果发现,抽穗-灌浆期的FPAR对冬小麦产量影响最大,其次拔节期的VTCI、抽穗-灌浆期和乳熟期的LAI以及返青期和拔节期的FPAR对冬小麦产量的影响较大。通过IPSO-WNN输出获取冬小麦综合监测指数I,构建I与统计单产之间的估产模型以估测关中平原冬小麦单产,结果显示,估测单产与统计单产之间的R2为0.63,均方根误差(RMSE)为505.50 kg/hm^(2),相比于前人的研究较好地解决了估产模型存在的“低产高估”的问题,因此,本文基于IPSO-WNN构建的估产模型能够较准确地估测关中平原冬小麦产量。 展开更多
关键词 冬小麦 产量估测 粒子群优化 小波神经网络 遥感多参数
下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
3
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
4
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
下载PDF
MFA-SGWNN:基于多特征聚合谱图小波神经网络的僵尸网络检测
5
作者 吴悔 陈旭 +1 位作者 景永俊 王叔洋 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期403-412,共10页
在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分。为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wa... 在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分。为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wavelet Neural Network,MFA-SGWNN),将流量的属性特征与空间特征相结合,能有效地捕获隐藏的感染主机流量特征,增强僵尸网络节点的特征表示,同时规避了数据样本不平衡和恶意加密流量对检测的影响。在ISCX2014僵尸网络数据集和CIC-IDS 2017(僵尸网络)数据集上的实验结果表明,MFA-SGWNN检测效果优于现有方法,具有更强的鲁棒性和泛化能力。 展开更多
关键词 僵尸网络 图小波神经网络 网络安全
下载PDF
Combining unscented Kalman filter and wavelet neural network for anti-slug
6
作者 Chuan Wang Long Chen +7 位作者 Lei Li Yong-Hong Yan Juan Sun Chao Yu Xin Deng Chun-Ping Liang Xue-Liang Zhang Wei-Ming Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3752-3765,共14页
The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the com... The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the complexity of production makes it difficult to measure the pressure of subsea pipelines, and measured values are not always accessible in real-time. The research introduces a technique for integrating Unscented Kalman Filter (UKF) and Wavelet Neural Network (WNN) to estimate the state of subsea pipeline pressure using historical data and a state model. The proposed method treats multiphase flow transport as a nonlinear model, with a dynamic WNN serving as the state observer. To achieve real-time state estimation, the WNN is included into the UKF algorithm to create a WNN-based UKF state equation. Integrate WNN and UKF in a novel way to predict system state accurately. The simulated results show that the approach can efficiently predict the inlet pressure and manage the slug flow in real-time using the riser's top pressure, outlet flow and valve opening. This method of estimate can significantly increase the control effect. 展开更多
关键词 State estimation Stable control Method fusion wavelet neural network Unscented Kalman filter
下载PDF
Optimal Wavelet Neural Network-Based Intrusion Detection in Internet of Things Environment
7
作者 Heba G.Mohamed Fadwa Alrowais +3 位作者 Mohammed Abdullah Al-Hagery Mesfer Al Duhayyim Anwer Mustafa Hilal Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第5期4467-4483,共17页
As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause ... As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset. 展开更多
关键词 Internet of things wavelet neural network SECURITY intrusion detection machine learning
下载PDF
Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks 被引量:3
8
作者 Shuangrui Fan Tingyun Ji +1 位作者 Wilmsmeier Gordon Bergqvist Rickard 《Journal of Transportation Technologies》 2013年第1期68-87,共20页
Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. Howev... Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set inputs for WNN forecasting model. The paper examines non-linearity and non-stationary features of the BDTI and elaborates WNN model building procedures. Finally, the comparison of forecasting performance between WNN and ARIMA time series models show that WNN has better forecasting accuracy than traditionally used modeling techniques. 展开更多
关键词 BDTI TANKER FREIGHT Rates Forecasting waveletS neural networks SHIPPING FINANCE
下载PDF
Wavelet chaotic neural networks and their application to continuous function optimization 被引量:2
9
作者 Jia-Hai Zhang Yao-Qun Xu 《Natural Science》 2009年第3期204-209,共6页
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second... Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks. 展开更多
关键词 wavelet CHAOTIC neural networks wavelet OPTIMIZATION
下载PDF
A NEW METHOD FOR SOLVING MSDE BASED ON WAVELET NEURAL NETWORKS 被引量:1
10
作者 Shui Penglang Bao Zheng Jiao Licheng (Key Lab. for Radar Signal Processing, Xidian Univ., Xi’an 710071) 《Journal of Electronics(China)》 1998年第3期215-220,共6页
In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the... In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations. 展开更多
关键词 wavelet neural networks Multiscale DIFFERENCE equation M-BAND orthogonalwavelet BASIS
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
11
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Time Series Modeling of River Flow Using Wavelet Neural Networks 被引量:1
12
作者 B. Krishna Y. R. Satyaji Rao P. C. Nayak 《Journal of Water Resource and Protection》 2011年第1期50-59,共10页
A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time s... A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR). 展开更多
关键词 Time SERIES RIVER FLOW waveletS neural networks
下载PDF
基于GA-WNN模型的光伏中期功率预测研究
13
作者 张慧娥 刘大贵 +2 位作者 朱婷婷 白彩清 张慧敏 《自动化仪表》 CAS 2024年第9期70-75,共6页
为解决光伏发电存在限电情况下,光伏中期功率预测结果偏小导致预测精度降低的问题,提出了一种基于光伏可用功率的遗传算法(GA)优化小波神经网络(WNN)的预测模型。GA-WNN模型在预测日的相近日期内覆盖晴天、雨天、多云等多种天气类型,通... 为解决光伏发电存在限电情况下,光伏中期功率预测结果偏小导致预测精度降低的问题,提出了一种基于光伏可用功率的遗传算法(GA)优化小波神经网络(WNN)的预测模型。GA-WNN模型在预测日的相近日期内覆盖晴天、雨天、多云等多种天气类型,通过模糊C-均值聚类算法辨识限电情况,并将光伏可用功率作为训练目标,建立了WNN光伏中期预测训练模型。GA-WNN模型以预测日获取的光伏数值天气预报作为输入,经过训练后可以直接预测未来1~10 d的光伏中期功率。通过新疆某光伏运行电站的实际运行数据进行验证,预测精度达96%以上。将GA应用于WNN预测模型中,可显著提高光伏中期功率预测精度。 展开更多
关键词 光伏 中期功率预测 遗传算法 小波神经网络 可用功率 模糊C-均值聚类
下载PDF
An Ensemble of Convolutional Neural Networks Using Wavelets for Image Classification 被引量:3
14
作者 Travis Williams Robert Li 《Journal of Software Engineering and Applications》 2018年第2期69-88,共20页
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ... Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy. 展开更多
关键词 CNN SDA neural Network Deep LEARNING wavelet Classification Fusion Machine LEARNING Object Recognition
下载PDF
Legendre Wavelet Neural Networks for Power Amplifier Linearization 被引量:1
15
作者 Xiaoyang Zheng Zhengyuan Wei Xiaozeng Xu 《Applied Mathematics》 2014年第20期3249-3255,共7页
In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical tra... In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical transmission signals and the gradient descent algorithm is applied to estimate the coefficients of the LWNN. Secondly, this technique is implemented to identify and optimize the coefficient parameters of the proposed pre-distorter (PD), i.e., the inversion model of the PA. The proposed method is most efficient and the pre-distorter shows stability and effectiveness because of the rich properties of the LWNN. A quite significant improvement in linearity is achieved based on the measured data of the PA characteristics and out power spectrum has been compared. 展开更多
关键词 Power AMPLIFIER PRE-DISTORTION LEGENDRE wavelet LEGENDRE wavelet neural networks
下载PDF
基于改进WNN的作战飞机维修保障能力评估方法
16
作者 游亮 王莉莉 +2 位作者 蔡忠义 魏杨沁 金建刚 《火力与指挥控制》 CSCD 北大核心 2024年第10期74-81,共8页
针对现有作战飞机维修保障能力评估中评估结果误差较大、不确定性较高等问题,提出一种基于改进小波神经网络的飞机维修保障能力评估方法。依据IPO&E模型建立飞机维修保障能力评估指标体系;利用麻雀搜索算法提高小波神经网络的收敛... 针对现有作战飞机维修保障能力评估中评估结果误差较大、不确定性较高等问题,提出一种基于改进小波神经网络的飞机维修保障能力评估方法。依据IPO&E模型建立飞机维修保障能力评估指标体系;利用麻雀搜索算法提高小波神经网络的收敛稳定性与评估准确性;基于分级量化理论对原始数据进行处理,并开展作战飞机维修保障能力评估。算例分析表明,所提方法的评估结果与收集到的维修保障能力评估数据仅有2.4%误差,稳定性优于其他神经网络,可为作战飞机维修保障能力评估提供可行方法。 展开更多
关键词 能力评估 小波神经网络 IPO&E模型 飞机维修保障
下载PDF
基于WNN参数整定的ADRC在火箭炮伺服系统中的应用
17
作者 廖华 侯润民 张志豪 《兵工自动化》 北大核心 2024年第4期14-18,53,共6页
针对多管火箭炮交流伺服系统存在变负载、强耦合和不确定性扰动等非线性问题,提出一种优化型小波神经网络自抗扰控制器(WNN-ADRC)。简化电流环节得到被控系统的数学模型,将小波神经网络(waveletneural network,WNN)嵌入自抗扰控制器中... 针对多管火箭炮交流伺服系统存在变负载、强耦合和不确定性扰动等非线性问题,提出一种优化型小波神经网络自抗扰控制器(WNN-ADRC)。简化电流环节得到被控系统的数学模型,将小波神经网络(waveletneural network,WNN)嵌入自抗扰控制器中进行参数整定,利用分层调整学习速率的方法优化小波神经网络的学习算法得到WNN-ADRC,采用WNN-ADRC控制火箭炮伺服系统,实现对非线性特性的精准估计和补偿。数值仿真结果表明:相对于传统的自抗扰控制器,WNN-ADRC能改善伺服系统的静态响应和动态性能,具有响应速度快、控制精度高的优点。 展开更多
关键词 交流伺服系统 小波神经网络 自抗扰控制器
下载PDF
Wavelet Transform and Neural Networks in Fault Diagnosis of a Motor Rotor 被引量:2
18
作者 RONG Ming-xing 《International Journal of Plant Engineering and Management》 2012年第2期104-111,共8页
In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the mo... In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy 展开更多
关键词 fault diagnosis wavelet transform neural networks MOTOR vibration signal
下载PDF
Prediction model of surrounding rock deformation in doublecontinuous-arch tunnel based on the ABC-WNN
19
作者 Yahui Zhang 《Railway Sciences》 2024年第6期717-730,共14页
Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization... Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects. 展开更多
关键词 Double arch tunnel Deformation prediction Artificial bee colonies Surrounding rock wavelet neural network
下载PDF
Discussion of stability in a class of models on recurrent wavelet neural networks
20
作者 邓韧 李著信 樊友洪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第4期471-476,共6页
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs.... Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition. 展开更多
关键词 recurrent wavelet neural networks asymptotic stability nonlinear dynamic system Lyapunov function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部