期刊文献+
共找到5,038篇文章
< 1 2 250 >
每页显示 20 50 100
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
1
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
Approximation to NLAR(p) with Wavelet Neural Networks
2
作者 朱石焕 吴曦 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第4期94-98,共5页
Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximati... Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied. 展开更多
关键词 wavelet neural networks orthonormal scaling functions NLAR(p)
下载PDF
Combining unscented Kalman filter and wavelet neural network for anti-slug
3
作者 Chuan Wang Long Chen +7 位作者 Lei Li Yong-Hong Yan Juan Sun Chao Yu Xin Deng Chun-Ping Liang Xue-Liang Zhang Wei-Ming Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3752-3765,共14页
The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the com... The stability of the subsea oil and gas production system is heavily influenced by slug flow. One successful method of managing slug flow is to use top valve control based on subsea pipeline pressure. However, the complexity of production makes it difficult to measure the pressure of subsea pipelines, and measured values are not always accessible in real-time. The research introduces a technique for integrating Unscented Kalman Filter (UKF) and Wavelet Neural Network (WNN) to estimate the state of subsea pipeline pressure using historical data and a state model. The proposed method treats multiphase flow transport as a nonlinear model, with a dynamic WNN serving as the state observer. To achieve real-time state estimation, the WNN is included into the UKF algorithm to create a WNN-based UKF state equation. Integrate WNN and UKF in a novel way to predict system state accurately. The simulated results show that the approach can efficiently predict the inlet pressure and manage the slug flow in real-time using the riser's top pressure, outlet flow and valve opening. This method of estimate can significantly increase the control effect. 展开更多
关键词 State estimation Stable control Method fusion wavelet neural network Unscented Kalman filter
下载PDF
Optimal Wavelet Neural Network-Based Intrusion Detection in Internet of Things Environment
4
作者 Heba G.Mohamed Fadwa Alrowais +3 位作者 Mohammed Abdullah Al-Hagery Mesfer Al Duhayyim Anwer Mustafa Hilal Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第5期4467-4483,共17页
As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause ... As the Internet of Things(IoT)endures to develop,a huge count of data has been created.An IoT platform is rather sensitive to security challenges as individual data can be leaked,or sensor data could be used to cause accidents.As typical intrusion detection system(IDS)studies can be frequently designed for working well on databases,it can be unknown if they intend to work well in altering network environments.Machine learning(ML)techniques are depicted to have a higher capacity at assisting mitigate an attack on IoT device and another edge system with reasonable accuracy.This article introduces a new Bird Swarm Algorithm with Wavelet Neural Network for Intrusion Detection(BSAWNN-ID)in the IoT platform.The main intention of the BSAWNN-ID algorithm lies in detecting and classifying intrusions in the IoT platform.The BSAWNN-ID technique primarily designs a feature subset selection using the coyote optimization algorithm(FSS-COA)to attain this.Next,to detect intrusions,the WNN model is utilized.At last,theWNNparameters are optimally modified by the use of BSA.Awidespread experiment is performed to depict the better performance of the BSAWNNID technique.The resultant values indicated the better performance of the BSAWNN-ID technique over other models,with an accuracy of 99.64%on the UNSW-NB15 dataset. 展开更多
关键词 Internet of things wavelet neural network SECURITY intrusion detection machine learning
下载PDF
Short-TermWind Power Prediction Based on Combinatorial Neural Networks
5
作者 Tusongjiang Kari Sun Guoliang +2 位作者 Lei Kesong Ma Xiaojing Wu Xian 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1437-1452,共16页
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w... Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy. 展开更多
关键词 Wind power prediction wavelet transform back propagation neural network bi-directional long short term memory
下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
6
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 Wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
下载PDF
Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks 被引量:3
7
作者 Shuangrui Fan Tingyun Ji +1 位作者 Wilmsmeier Gordon Bergqvist Rickard 《Journal of Transportation Technologies》 2013年第1期68-87,共20页
Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. Howev... Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set inputs for WNN forecasting model. The paper examines non-linearity and non-stationary features of the BDTI and elaborates WNN model building procedures. Finally, the comparison of forecasting performance between WNN and ARIMA time series models show that WNN has better forecasting accuracy than traditionally used modeling techniques. 展开更多
关键词 BDTI TANKER FREIGHT Rates Forecasting waveletS neural networks SHIPPING FINANCE
下载PDF
Wavelet chaotic neural networks and their application to continuous function optimization 被引量:2
8
作者 Jia-Hai Zhang Yao-Qun Xu 《Natural Science》 2009年第3期204-209,共6页
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second... Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks. 展开更多
关键词 wavelet CHAOTIC neural networks wavelet OPTIMIZATION
下载PDF
A NEW METHOD FOR SOLVING MSDE BASED ON WAVELET NEURAL NETWORKS 被引量:1
9
作者 Shui Penglang Bao Zheng Jiao Licheng (Key Lab. for Radar Signal Processing, Xidian Univ., Xi’an 710071) 《Journal of Electronics(China)》 1998年第3期215-220,共6页
In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the... In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations. 展开更多
关键词 wavelet neural networks Multiscale DIFFERENCE equation M-BAND orthogonalwavelet BASIS
下载PDF
Time Series Modeling of River Flow Using Wavelet Neural Networks 被引量:1
10
作者 B. Krishna Y. R. Satyaji Rao P. C. Nayak 《Journal of Water Resource and Protection》 2011年第1期50-59,共10页
A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time s... A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR). 展开更多
关键词 Time SERIES RIVER FLOW waveletS neural networks
下载PDF
An Ensemble of Convolutional Neural Networks Using Wavelets for Image Classification 被引量:3
11
作者 Travis Williams Robert Li 《Journal of Software Engineering and Applications》 2018年第2期69-88,共20页
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ... Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy. 展开更多
关键词 CNN SDA neural network Deep LEARNING wavelet Classification Fusion Machine LEARNING Object Recognition
下载PDF
Legendre Wavelet Neural Networks for Power Amplifier Linearization 被引量:1
12
作者 Xiaoyang Zheng Zhengyuan Wei Xiaozeng Xu 《Applied Mathematics》 2014年第20期3249-3255,共7页
In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical tra... In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical transmission signals and the gradient descent algorithm is applied to estimate the coefficients of the LWNN. Secondly, this technique is implemented to identify and optimize the coefficient parameters of the proposed pre-distorter (PD), i.e., the inversion model of the PA. The proposed method is most efficient and the pre-distorter shows stability and effectiveness because of the rich properties of the LWNN. A quite significant improvement in linearity is achieved based on the measured data of the PA characteristics and out power spectrum has been compared. 展开更多
关键词 Power AMPLIFIER PRE-DISTORTION LEGENDRE wavelet LEGENDRE wavelet neural networks
下载PDF
Wavelet Transform and Neural Networks in Fault Diagnosis of a Motor Rotor 被引量:2
13
作者 RONG Ming-xing 《International Journal of Plant Engineering and Management》 2012年第2期104-111,共8页
In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the mo... In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy 展开更多
关键词 fault diagnosis wavelet transform neural networks MOTOR vibration signal
下载PDF
Discussion of stability in a class of models on recurrent wavelet neural networks
14
作者 邓韧 李著信 樊友洪 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第4期471-476,共6页
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs.... Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition. 展开更多
关键词 recurrent wavelet neural networks asymptotic stability nonlinear dynamic system Lyapunov function
下载PDF
Stock Price Prediction Using Predictive Error Compensation Wavelet Neural Networks
15
作者 Ajla Kulaglic Burak Berk Ustundag 《Computers, Materials & Continua》 SCIE EI 2021年第9期3577-3593,共17页
:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that i... :Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems. 展开更多
关键词 Predictive error compensating wavelet neural network time series prediction stock price prediction neural networks wavelet transform
下载PDF
Method of Detection Abnormal Features in Ionosphere Critical Frequency Data on the Basis of Wavelet Transformation and Neural Networks Combination
16
作者 O. V. Mandrikova Yu. A. Polozov +1 位作者 V. V. Bogdanov E. A. Zhizhikina 《Journal of Software Engineering and Applications》 2012年第12期181-187,共7页
The research is focused on the development of automatic detection method of abnormal features, that occur in recorded time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity.... The research is focused on the development of automatic detection method of abnormal features, that occur in recorded time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity. The method is based on joint application of wavelet-transformation and neural networks. On the basis of wavelet transformation algorithms for the detection of features and estimation of their parameters were developed. Detection and analysis of characteristic components of time series are performed on the basis of joint application of wavelet transformation and neural networks. Method's approbation is performed on fOF2 data obtained at the observatory “Paratunka” (Paratunka settlement, Kamchatskiy Kray). 展开更多
关键词 wavelet transformation neural networks CRITICAL frequency of IONOSPHERE ABNORMALITIES EARTHQUAKES
下载PDF
Face Recognition Based on Wavelet Packet Coefficients and Radial Basis Function Neural Networks
17
作者 Thangairulappan Kathirvalavakumar Jeyasingh Jebakumari Beulah Vasanthi 《Journal of Intelligent Learning Systems and Applications》 2013年第2期115-122,共8页
An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function ... An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function (RBF) neural network is presented. The face images are decomposed by 2-level two-dimensional (2-D) wavelet packet transformation. The wavelet packet coefficients obtained from the wavelet packet transformation are averaged using two different proposed methods. In the first method, wavelet packet coefficients of individual samples of a class are averaged then decomposed. The wavelet packet coefficients of all the samples of a class are averaged in the second method. The averaged wavelet packet coefficients are recognized by a RBF network. The proposed work tested on three face databases such as Olivetti-Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essexface database. The proposed methods result in dimensionality reduction, low computational complexity and provide better recognition rates. The computational complexity is low as the dimensionality of the input pattern is reduced. 展开更多
关键词 Feature Extraction FACE Recognition wavelet PACKETS RADIAL BASIS Function neural network
下载PDF
Establishment of a Fault Prognosis Model Using Wavelet Neural Networks and Its Engineering Application
18
作者 LIUQi-peng FENGQuan-ke XIONGWei 《International Journal of Plant Engineering and Management》 2004年第2期72-78,共7页
Fault diagnosis is confronted with two problems; how to '' measure'' the growthof a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to ... Fault diagnosis is confronted with two problems; how to '' measure'' the growthof a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to solve these two problems by proposing a model of fault prognosis usingwavelet basis neural network. Gaussian radial basis functions and Mexican hat wavelet frames areused as scaling functions and wavelets, respectively. The centers of the basis functions arecalculated using a dyadic expansion scheme and a k-means clustering algorithm. 展开更多
关键词 fault diagnosis fault prognosis neural networks wavelet neural networks radial basis function
下载PDF
A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion
19
作者 ANG Xue-ye 《International Journal of Plant Engineering and Management》 2007年第1期42-48,共7页
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n... The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate. 展开更多
关键词 fault diagnosis wavelet analysis integrated neural network information fusion diagnosis rate
下载PDF
SOC estimation of lithium-ion power battery for HEV based on advanced wavelet neural network 被引量:3
20
作者 付主木 赵瑞 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期299-304,共6页
In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Bas... In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods. 展开更多
关键词 wavelet neural network state of charge(SOC) hybrid electric vehicle lithium-ion power battery
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部