A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics o...A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processingdetail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, andextracting modulus maximum from each window, fault features in time-domain are highlighted. To makefurther analysis on the reason of the fault, wavelet package transform based on SGWT is used toprocess vibration data again. Calculating the energy of each frequency-band, the energy distributionfeatures of the signal are attained. Then taking account of the fault features and the energydistribution, the reason of the fault is worked out. An early impact-rub fault caused by axismisalignment and rotor imbalance is successfully detected by using this method in an oil refinery.展开更多
A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the ...A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.展开更多
文摘A new time-domain analysis method that uses second generation wavelettransform (SGWT) for weak fault feature extraction is proposed. To extract incipient fault feature,a biorthogonal wavelet with the characteristics of impact is constructed by using SGWT. Processingdetail signal of SGWT with a sliding window devised on the basis of rotating operation cycle, andextracting modulus maximum from each window, fault features in time-domain are highlighted. To makefurther analysis on the reason of the fault, wavelet package transform based on SGWT is used toprocess vibration data again. Calculating the energy of each frequency-band, the energy distributionfeatures of the signal are attained. Then taking account of the fault features and the energydistribution, the reason of the fault is worked out. An early impact-rub fault caused by axismisalignment and rotor imbalance is successfully detected by using this method in an oil refinery.
基金Supported by the National Natural Science Foundation of China (60672003)
文摘A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.