Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage...Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.展开更多
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c...The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.展开更多
Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell vol...Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell voltage.In this paper,the frequency segmentation of cell voltage is used as the basis for designing filters to obtain these parameters.Based on the qualitative analysis of the cell voltage,the sub-band instantaneous energy spectrum(SIEP)is first proposed,which is then used to quantitatively represent the characteristics of the designated frequency bands of the cell voltage under various cell conditions.Ultimately,a cell condition-sensitive frequency segmentation method is given.The proposed frequency segmentation method divides the effective frequency band into the[0,0.001]Hz band of lowfrequency signals and the[0.001,0.050]Hz band of low-frequency noise,and subdivides the lowfrequency noise into the[0.001,0.010]Hz band of metal pad abnormal rolling and the[0.01,0.05]Hz band of sub-low-frequency noise.Compared with the instantaneous energy spectrum based on empirical mode decomposition,the SIEP more finely represents the law of energy change with time in any designated frequency band within the effective frequency band of the cell voltage.The proposed frequency segmentation method is more sensitive to cell condition changes and can obtain more elaborate details of online cell condition information,thus providing a more reliable and accurate online basis for cell condition monitoring and control decisions.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the ta...The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is...In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is performed by means of the 236-day health monitoring data. The analysis results reveal that the measured WPES has remarkable seasonal correlation with the environmental temperature. The seasonal change of environmental temperature accounts for the variation of the damage alarming parameter I <SUB>p </SUB>of the dominant frequency bands with an averaged variance of 200%. The statistical modeling technique using a 6th-order polynomial is adopted to formulate the correlation between the WPES and temperature, on the basis of which the abnormal changes of measured damage alarming parameter I <SUB>p </SUB>are detected using the mean value control chart. It is found that the proposed method can effectively eliminate temperature complications from the time series of WPES and exhibit good capability for detecting the damage-induced 10% variances of the damage alarming parameter I <SUB>p </SUB>. And the proposed WPES-based method is superior the modal frequency and hence is more suitable for online real-time damage alarming for long-span bridges.展开更多
基金This work is supported by Nature Science Foundation of Peo-ple ' s Republic of China ( No.50045019).
文摘Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.
文摘The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.
基金This work was supported by the Program of the National Natural Science Foundation of China(61988101,61773405,and 61751312).
文摘Cell voltage is a widely used signal that can be measured online from an industrial aluminum electrolysis cell.A variety of parameters for the analysis and control of industrial cells are calculated using the cell voltage.In this paper,the frequency segmentation of cell voltage is used as the basis for designing filters to obtain these parameters.Based on the qualitative analysis of the cell voltage,the sub-band instantaneous energy spectrum(SIEP)is first proposed,which is then used to quantitatively represent the characteristics of the designated frequency bands of the cell voltage under various cell conditions.Ultimately,a cell condition-sensitive frequency segmentation method is given.The proposed frequency segmentation method divides the effective frequency band into the[0,0.001]Hz band of lowfrequency signals and the[0.001,0.050]Hz band of low-frequency noise,and subdivides the lowfrequency noise into the[0.001,0.010]Hz band of metal pad abnormal rolling and the[0.01,0.05]Hz band of sub-low-frequency noise.Compared with the instantaneous energy spectrum based on empirical mode decomposition,the SIEP more finely represents the law of energy change with time in any designated frequency band within the effective frequency band of the cell voltage.The proposed frequency segmentation method is more sensitive to cell condition changes and can obtain more elaborate details of online cell condition information,thus providing a more reliable and accurate online basis for cell condition monitoring and control decisions.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金Projects(41272304,51374244,41372278,51304241)supported by the National Natural Science Foundation of ChinaProject(2010CB732004)supported by the National Basic Research Program of China
文摘The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.
基金Supported by the National Natural Science Foundation of China(Grant Nos.50725828,50808041)the Natural Science Foundation of Jiangsu Province(Grant No.BK2008312)
文摘In order to establish an environmental-condition-normalized structural damage alarming method, the seasonal correlation analysis of wavelet packet energy spectrum (WPES) and temperature of Runyang Suspension Bridge is performed by means of the 236-day health monitoring data. The analysis results reveal that the measured WPES has remarkable seasonal correlation with the environmental temperature. The seasonal change of environmental temperature accounts for the variation of the damage alarming parameter I <SUB>p </SUB>of the dominant frequency bands with an averaged variance of 200%. The statistical modeling technique using a 6th-order polynomial is adopted to formulate the correlation between the WPES and temperature, on the basis of which the abnormal changes of measured damage alarming parameter I <SUB>p </SUB>are detected using the mean value control chart. It is found that the proposed method can effectively eliminate temperature complications from the time series of WPES and exhibit good capability for detecting the damage-induced 10% variances of the damage alarming parameter I <SUB>p </SUB>. And the proposed WPES-based method is superior the modal frequency and hence is more suitable for online real-time damage alarming for long-span bridges.