On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result S...On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.展开更多
In this paper,we introduce a novel hybrid variational model which generalizes the classical total variation method and the wavelet shrinkage method.An alternating minimization direction algorithm is then employed.We a...In this paper,we introduce a novel hybrid variational model which generalizes the classical total variation method and the wavelet shrinkage method.An alternating minimization direction algorithm is then employed.We also prove that it converges strongly to the minimizer of the proposed hybrid model.Finally,some numerical examples illustrate clearly that the new model outperforms the standard total variation method and wavelet shrinkage method as it recovers better image details and avoids the Gibbs oscillations.展开更多
Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given function f and is widely used in data compression,signal processing and statistics,etc.For Calder′on-Zygmund operators T,it is interestin...Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given function f and is widely used in data compression,signal processing and statistics,etc.For Calder′on-Zygmund operators T,it is interesting to construct estimator of T f,based on wavelet shrinkage estimator of f.With the help of a representation of operators on wavelets,due to Beylkin et al.,an estimator of T f is presented in this paper.The almost everywhere convergence and norm convergence of the proposed estimators are established.展开更多
This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients...This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients, and the coefficients smaller than the threshold are set to zero. The curvature term of the ISS can remove the edge artifacts and preserve sharp edges. For the multiscale interpretation of the ISS and the multiscale property of the wavelet representation, small details are preserved. This paper illustrates that the wavelet ISS model can be deduced from the wavelet based on a total variation minimization problem. A stopping criterion is obtained from this minimization in the sense of the Bregman distance in the wavelet domain. Numerical examples show the improvement for the image denoising with the proposed method in the sense of the signal to noise ratio and with fewer details remained in the residue.展开更多
The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our appr...The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.展开更多
The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very...The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image.展开更多
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process...An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.展开更多
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration (IS201126025)The Basis Research Foundation of Key laboratory of Geospace Environment & Geodesy Ministry of Education,China (10-01-09)
文摘On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.
基金supported by RGC 203109,RGC 201508the FRGs of Hong Kong Baptist Universitythe PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grant Council of Hong Kong and the Consulate General of France in Hong Kong F-HK05/08T.
文摘In this paper,we introduce a novel hybrid variational model which generalizes the classical total variation method and the wavelet shrinkage method.An alternating minimization direction algorithm is then employed.We also prove that it converges strongly to the minimizer of the proposed hybrid model.Finally,some numerical examples illustrate clearly that the new model outperforms the standard total variation method and wavelet shrinkage method as it recovers better image details and avoids the Gibbs oscillations.
基金supported by National Natural Science Foundation of China(Grant Nos.11171014 and 91130009)National Basic Research Program of China(Grant No.973-2010CB-731900)
文摘Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given function f and is widely used in data compression,signal processing and statistics,etc.For Calder′on-Zygmund operators T,it is interesting to construct estimator of T f,based on wavelet shrinkage estimator of f.With the help of a representation of operators on wavelets,due to Beylkin et al.,an estimator of T f is presented in this paper.The almost everywhere convergence and norm convergence of the proposed estimators are established.
基金supported by the National Natural Science Foundation of China (61101208)
文摘This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients, and the coefficients smaller than the threshold are set to zero. The curvature term of the ISS can remove the edge artifacts and preserve sharp edges. For the multiscale interpretation of the ISS and the multiscale property of the wavelet representation, small details are preserved. This paper illustrates that the wavelet ISS model can be deduced from the wavelet based on a total variation minimization problem. A stopping criterion is obtained from this minimization in the sense of the Bregman distance in the wavelet domain. Numerical examples show the improvement for the image denoising with the proposed method in the sense of the signal to noise ratio and with fewer details remained in the residue.
基金Supported by the National Natural Science Foundation of China (10971189, 11001247)the Zhejiang Natural Science Foundation of China (Y6090091)
文摘The dual-tree complex wavelet transform is a useful tool in signal and image process- ing. In this paper, we propose a dual-tree complex wavelet transform (CWT) based algorithm for image inpalnting problem. Our approach is based on Cai, Chan, Shen and Shen's framelet-based algorithm. The complex wavelet transform outperforms the standard real wavelet transform in the sense of shift-invariance, directionality and anti-aliasing. Numerical results illustrate the good performance of our algorithm.
文摘The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis.