A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibratin...A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission.展开更多
In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for mo...In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.展开更多
Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for th...Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for this problem.Firstly,the sub-bands of the new method are made up of the wavelet packets (WP) coefficients.Secondly,the selection criterion of the new method is a combination of the mutual information (MI),kurtosis and sparsity.One sub-band or a sub-bands group obtained from the new method are more suitable as the inputs parameters of the algorithm of ICA than mixed images.The new method has been applied into the BSS of partially dependent images and highly dependent images successfully.According to the separation experiments,it is shown that the separation efficacy of the new method is more accurate and robust.展开更多
Epilepsy is a chronic neurological disorder which is identified by successive unexpected seizures. Electroencephalogram (EEG) is the electrical signal of brain which contains valuable information about its normal or e...Epilepsy is a chronic neurological disorder which is identified by successive unexpected seizures. Electroencephalogram (EEG) is the electrical signal of brain which contains valuable information about its normal or epileptic activity. In this work EEG and its frequency sub-bands have been analysed to detect epileptic seizures. A discrete wavelet transform (DWT) has been applied to decompose the EEG into its sub-bands. Applying histogram and Spectral entropy approaches to the EEG sub-bands, normal and abnormal states of brain can be distinguished with more than 99% probability.展开更多
For realizing of long text information hiding and covert communication, a binary watermark sequence was obtained firstly from a text file and encoded by a redundant encoding method. Then, two neighboring blocks were s...For realizing of long text information hiding and covert communication, a binary watermark sequence was obtained firstly from a text file and encoded by a redundant encoding method. Then, two neighboring blocks were selected at each time from the Hilbert scanning sequence of carrier image blocks, and transformed by 1-level discrete wavelet transformation (DWT). And then the double block based JNDs (just noticeable difference) were calculated with a visual model. According to the different codes of each two watermark bits, the average values of two corresponding detail sub-bands were modified by using one of JNDs to hide information into carrier image. The experimental results show that the hidden information is invisible to human eyes, and the algorithm is robust to some common image processing operations. The conclusion is that the algorithm is effective and practical.展开更多
Linear Discriminant Analysis (LDA) is one of the principal techniques used in face recognition systems. LDA is well-known scheme for feature extraction and dimension reduction. It provides improved performance over ...Linear Discriminant Analysis (LDA) is one of the principal techniques used in face recognition systems. LDA is well-known scheme for feature extraction and dimension reduction. It provides improved performance over the standard Principal Component Analysis (PCA) method of face recognition by introducing the concept of classes and distance between classes. This paper provides an overview of PCA, the various variants of LDA and their basic drawbacks. The paper also has proposed a development over classical LDA, i.e., LDA using wavelets transform approach that enhances performance as regards accuracy and time complexity. Experiments on ORL face database clearly demonstrate this and the graphical comparison of the algorithms clearly showcases the improved recognition rate in case of the proposed algorithm.展开更多
Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific c...Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.展开更多
基金Supported by the National Natural Science Foundation of China(No.51135001)
文摘A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission.
文摘In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.
文摘Because of the correlation of images,the efficiency of the standard ICA is not satisfied in the blind source separation (BSS) of image.Therefore,a new method of sub-band ICA with selection criterion is proposed for this problem.Firstly,the sub-bands of the new method are made up of the wavelet packets (WP) coefficients.Secondly,the selection criterion of the new method is a combination of the mutual information (MI),kurtosis and sparsity.One sub-band or a sub-bands group obtained from the new method are more suitable as the inputs parameters of the algorithm of ICA than mixed images.The new method has been applied into the BSS of partially dependent images and highly dependent images successfully.According to the separation experiments,it is shown that the separation efficacy of the new method is more accurate and robust.
文摘Epilepsy is a chronic neurological disorder which is identified by successive unexpected seizures. Electroencephalogram (EEG) is the electrical signal of brain which contains valuable information about its normal or epileptic activity. In this work EEG and its frequency sub-bands have been analysed to detect epileptic seizures. A discrete wavelet transform (DWT) has been applied to decompose the EEG into its sub-bands. Applying histogram and Spectral entropy approaches to the EEG sub-bands, normal and abnormal states of brain can be distinguished with more than 99% probability.
文摘For realizing of long text information hiding and covert communication, a binary watermark sequence was obtained firstly from a text file and encoded by a redundant encoding method. Then, two neighboring blocks were selected at each time from the Hilbert scanning sequence of carrier image blocks, and transformed by 1-level discrete wavelet transformation (DWT). And then the double block based JNDs (just noticeable difference) were calculated with a visual model. According to the different codes of each two watermark bits, the average values of two corresponding detail sub-bands were modified by using one of JNDs to hide information into carrier image. The experimental results show that the hidden information is invisible to human eyes, and the algorithm is robust to some common image processing operations. The conclusion is that the algorithm is effective and practical.
文摘Linear Discriminant Analysis (LDA) is one of the principal techniques used in face recognition systems. LDA is well-known scheme for feature extraction and dimension reduction. It provides improved performance over the standard Principal Component Analysis (PCA) method of face recognition by introducing the concept of classes and distance between classes. This paper provides an overview of PCA, the various variants of LDA and their basic drawbacks. The paper also has proposed a development over classical LDA, i.e., LDA using wavelets transform approach that enhances performance as regards accuracy and time complexity. Experiments on ORL face database clearly demonstrate this and the graphical comparison of the algorithms clearly showcases the improved recognition rate in case of the proposed algorithm.
基金supported by China Petrochemical key project during the 11th Five-year Plan as well as the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Noise has traditionally been suppressed or eliminated in seismic data sets by the use of Fourier filters and, to a lesser degree, nonlinear statistical filters. Although these methods are quite useful under specific conditions, they may produce undesirable effects for the low signal to noise ratio data. In this paper, a new method, multi-scale ridgelet transform, is used in the light of the theory of ridgelet transform. We employ wavelet transform to do sub-band decomposition for the signals and then use non-linear thresholding in ridgelet domain for every block. In other words, it is based on the idea of partition, at sufficiently fine scale, a curving singularity looks straight, and so ridgelet transform can work well in such cases. Applications on both synthetic data and actual seismic data from Sichuan basin, South China, show that the new method eliminates the noise portion of the signal more efficiently and retains a greater amount of geologic data than other methods, the quality and consecutiveness of seismic event are improved obviously as well as the quality of section is improved.