In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her e...Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are a...This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired.A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform(DWT)technique.The decision tree technique is used to select significant features out of all extracted wavelet features.C-support vector classification(C-SVC)andν-support vector classification(ν-SVC)models with different kernel functions of support vector machine(SVM)are used to study and classify the tool condition based on selected features.From the results obtained,C-SVC is the best model thanν-SVC and it can be able to give 94.5%classification accuracy for face milling of special steel alloy 42CrMo4.展开更多
Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provid...Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provide early diagnosis and timely treatment for HL.This study investigated the advantages and disadvantages of three classical machine learning methods:multilayer perceptron(MLP),support vector machine(SVM),and least-square support vector machine(LS-SVM)approach andmade a further optimization of the LS-SVM model via wavelet entropy.The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector machine uses hinge loss function and least-square optimizationmethod.Besides,a wavelet selection method was proposed,and we found db4 can achieve the best results.The experiments showed that the LS-SVM method can identify the hearing loss disease with an overall accuracy of three classes as 84.89±1.77,which is superior to SVM andMLP.The results show that the least-square support vector machine is effective in hearing loss identification.展开更多
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support...Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.展开更多
Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and...Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and data analysis. The vibration signal was modeled from the double row bearing,and wavelet transform and support vector machine model( WT-SVM model) was constructed and trained for bearing degradation process prediction. Besides Hazen plotting position relationships was applied to describing the degradation trend distribution and a 95%confidence level based on t-distribution was given. The single SVM model and neural network( NN) approach were also investigated as a comparison. Results indicate that the WT-SVM model outperforms the NN and single SVM models,and is feasible and effective in machinery condition prediction.展开更多
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the...According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the wavelet packet decomposition approach and support vector machines,a new diagnosis model is proposed for such fault diagnoses in this study.The vibration eigenvalue extraction is analyzed through wavelet packet decomposition,and a four-layer support vector machine is constituted as a fault classifier.The Gaussian radial basis function is employed as the kernel function for the classifier.The penalty parameter c and kernel parameterδof the support vector machine are vital for the diagnostic accuracy,and these parameters must be carefully predetermined.Thus,a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c andδfor the support vector machine in each layer are determined by the particle swarm algorithm.The validity of this fault diagnosis model is determined with a real dataset from the operation experiment.Moreover,comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented.The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models.展开更多
Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power ...Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.展开更多
Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft.A novel automatic defect identification system is presented.Wavelet packet analysis(WPA)was appli...Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft.A novel automatic defect identification system is presented.Wavelet packet analysis(WPA)was applied to feature extraction of ultrasonic signal,and optimal Support vector machine(SVM)was used to perform the identification task.Meanwhile,comparative study on convergent velocity and classified effect was done among SVM and several improved BP network models.To validate the method,some experiments were performed and the results show that the proposed system has very high identification performance for large shafts and the optimal SVM processes better classification performance and spreading potential than BP manual neural network under small study sample condition.展开更多
Congenital Long QT Syndrome (LQTS) is a genetic disease and associated with significant arrhythmias and sudden cardiac death. We introduce a noninva-sive procedure in which Discrete Wavelet Trans-form (DWT) is used to...Congenital Long QT Syndrome (LQTS) is a genetic disease and associated with significant arrhythmias and sudden cardiac death. We introduce a noninva-sive procedure in which Discrete Wavelet Trans-form (DWT) is used to extract features from elec-trocardiogram (ECG) time-series data first, then the extracted features data is classified as either abnormal or unaffected using Support Vector Machines (SVM). A total of 26 genetically identified patients with LQTS and 19 healthy controls were studied. Due to the limited number of samples, model selection was done by training 44 instances and testing it on remaining one in each run. The proposed method shows reasonably high average accuracy in LQTS diagnosis when combined with best parameter selection process in the classifica-tion stage. An accuracy of 80%is achieved when Sigmoid kernel is used in v-SVM with parameters v = 0.58 and r = 0.5. The corresponding SVM model showed a classification rate of 21/26 for LQTS pa-tients and 15/19 for controls. Since the diagnosis of LQTS can be challenging, the proposed method is promising and can be a potential tool in the correct diagnosis. The method may be improved further if larger data sets can be obtained and used.展开更多
With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly af...With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers.展开更多
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina...The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).展开更多
This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The sche...This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.展开更多
Many remote sensing image classifiers are limited in their ability to combine spectral features with spatial features. Multi-kernel classifiers, however, are capable of integrating spectral features with spatial or st...Many remote sensing image classifiers are limited in their ability to combine spectral features with spatial features. Multi-kernel classifiers, however, are capable of integrating spectral features with spatial or structural features using multiple kernels and summing them for final outputs. Using a support vector machine (SVM) as classifier, different multi-kernel classifiers are constructed and tested using 64-band Operational Modular Imaging Spectrometer II hyperspectral image of Changping Area, Beijing City. Results show that by integrating spectral and wavelet texture information, multi-kernel SVM classifiers can obtain more accurate classification results than sole-kernel SVM classifiers and cross-information SVM kernel classifiers. Moreover, when the multi-kernel SVM classifier is used, the combination of the first four principal components from principal component analysis and wavelet texture provides the highest accuracy (97.06%). Multi-kernel SVM is therefore an effective approach to improve the accuracy of hyperspectral image classification and to expand possibilities for remote sensing image interpretation and application.展开更多
We propose a new method for image denoising combining wavelet transform and support vector machines (SVMs). A new image filter operator based on the least squares wavelet support vector machines (LSWSVMs) is prese...We propose a new method for image denoising combining wavelet transform and support vector machines (SVMs). A new image filter operator based on the least squares wavelet support vector machines (LSWSVMs) is presented. Noisy image can be denoised through this filter operator and wavelet thresholding technique. Experimental results show that the proposed method is better than the existing SVM regression with the Gaussian radial basis function (RBF) and polynomial RBF. Meanwhile, it can achieve better performance than other traditional methods such as the averaee filter and median filter.展开更多
To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SV...To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SVM) and the wavelet kernel function theory, an admissive support vector kernel, which is a wavelet kernel constructed in this article, implements the combination of the wavelet technique with SVM. Then, wavelet support vector machine (WSVM) is applied to DDoS attack detections and as a classifying means to test the validity of the wavelet kernel function. Simulation experiments show that under the same conditions, the predictive ability of WSVM is improved and the computation burden is alleviated. The detection accuracy of WSVM is higher than the traditional SVM by about 4%, while its false positive is lower than the traditional SVM. Thus, for DDoS detections, WSVM shows better detection performance and is more adaptive to the changing network environment.展开更多
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.
基金supported by University of Macao Research Grant,China (Grant No. RG057/08-09S/VCM/FST, Grant No. UL011/09-Y1/ EME/ WPK01/FST)
文摘Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
文摘This paper presents the fault diagnosis of face milling tool based on machine learning approach.While machining,spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired.A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform(DWT)technique.The decision tree technique is used to select significant features out of all extracted wavelet features.C-support vector classification(C-SVC)andν-support vector classification(ν-SVC)models with different kernel functions of support vector machine(SVM)are used to study and classify the tool condition based on selected features.From the results obtained,C-SVC is the best model thanν-SVC and it can be able to give 94.5%classification accuracy for face milling of special steel alloy 42CrMo4.
基金This research was supported by grants from the Ph.D.Programs Foundation of Henan Polytechnic University(B2016-38).
文摘Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provide early diagnosis and timely treatment for HL.This study investigated the advantages and disadvantages of three classical machine learning methods:multilayer perceptron(MLP),support vector machine(SVM),and least-square support vector machine(LS-SVM)approach andmade a further optimization of the LS-SVM model via wavelet entropy.The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector machine uses hinge loss function and least-square optimizationmethod.Besides,a wavelet selection method was proposed,and we found db4 can achieve the best results.The experiments showed that the LS-SVM method can identify the hearing loss disease with an overall accuracy of three classes as 84.89±1.77,which is superior to SVM andMLP.The results show that the least-square support vector machine is effective in hearing loss identification.
文摘Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.
基金National Natural Science Foundation of China(No.51205043)the Special Fundamental Research Funds for Central Universities of China(No.DUT14QY21)
文摘Soft failure of mechanical equipment makes its performance drop gradually,which occupies a large proportion and has certain regularity. The performance can be evaluated and predicted through early state monitoring and data analysis. The vibration signal was modeled from the double row bearing,and wavelet transform and support vector machine model( WT-SVM model) was constructed and trained for bearing degradation process prediction. Besides Hazen plotting position relationships was applied to describing the degradation trend distribution and a 95%confidence level based on t-distribution was given. The single SVM model and neural network( NN) approach were also investigated as a comparison. Results indicate that the WT-SVM model outperforms the NN and single SVM models,and is feasible and effective in machinery condition prediction.
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
基金Supported by National Natural Science Foundation of China(Grant No.51705372)National Science and Technology Project of the Power Grid of China(Grant No.5211DS16002L).
文摘According to statistic data,machinery faults contribute to largest proportion of High-voltage circuit breaker failures,and traditional maintenance methods exist some disadvantages for that issue.Therefore,based on the wavelet packet decomposition approach and support vector machines,a new diagnosis model is proposed for such fault diagnoses in this study.The vibration eigenvalue extraction is analyzed through wavelet packet decomposition,and a four-layer support vector machine is constituted as a fault classifier.The Gaussian radial basis function is employed as the kernel function for the classifier.The penalty parameter c and kernel parameterδof the support vector machine are vital for the diagnostic accuracy,and these parameters must be carefully predetermined.Thus,a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c andδfor the support vector machine in each layer are determined by the particle swarm algorithm.The validity of this fault diagnosis model is determined with a real dataset from the operation experiment.Moreover,comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented.The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models.
文摘Nowadays, power quality issues are becoming a significant research topic because of the increasing inclusion of very sensitive devices and considerable renewable energy sources. In general, most of the previous power quality classification techniques focused on single power quality events and did not include an optimal feature selection process. This paper presents a classification system that employs Wavelet Transform and the RMS profile to extract the main features of the measured waveforms containing either single or complex disturbances. A data mining process is designed to select the optimal set of features that better describes each disturbance present in the waveform. Support Vector Machine binary classifiers organized in a “One Vs Rest” architecture are individually optimized to classify single and complex disturbances. The parameters that rule the performance of each binary classifier are also individually adjusted using a grid search algorithm that helps them achieve optimal performance. This specialized process significantly improves the total classification accuracy. Several single and complex disturbances were simulated in order to train and test the algorithm. The results show that the classifier is capable of identifying >99% of single disturbances and >97% of complex disturbances.
基金Supported by the Research Program of International Technology Collaboration and Communication of Sichuan(2007H12-017)
文摘Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft.A novel automatic defect identification system is presented.Wavelet packet analysis(WPA)was applied to feature extraction of ultrasonic signal,and optimal Support vector machine(SVM)was used to perform the identification task.Meanwhile,comparative study on convergent velocity and classified effect was done among SVM and several improved BP network models.To validate the method,some experiments were performed and the results show that the proposed system has very high identification performance for large shafts and the optimal SVM processes better classification performance and spreading potential than BP manual neural network under small study sample condition.
文摘Congenital Long QT Syndrome (LQTS) is a genetic disease and associated with significant arrhythmias and sudden cardiac death. We introduce a noninva-sive procedure in which Discrete Wavelet Trans-form (DWT) is used to extract features from elec-trocardiogram (ECG) time-series data first, then the extracted features data is classified as either abnormal or unaffected using Support Vector Machines (SVM). A total of 26 genetically identified patients with LQTS and 19 healthy controls were studied. Due to the limited number of samples, model selection was done by training 44 instances and testing it on remaining one in each run. The proposed method shows reasonably high average accuracy in LQTS diagnosis when combined with best parameter selection process in the classifica-tion stage. An accuracy of 80%is achieved when Sigmoid kernel is used in v-SVM with parameters v = 0.58 and r = 0.5. The corresponding SVM model showed a classification rate of 21/26 for LQTS pa-tients and 15/19 for controls. Since the diagnosis of LQTS can be challenging, the proposed method is promising and can be a potential tool in the correct diagnosis. The method may be improved further if larger data sets can be obtained and used.
文摘With the progress of deep learning research, convolutional neural networks have become the most important method in feature extraction. How to effectively classify and recognize the extracted features will directly affect the performance of the entire network. Traditional processing methods include classification models such as fully connected network models and support vector machines. In order to solve the problem that the traditional convolutional neural network is prone to over-fitting for the classification of small samples, a CNN-TWSVM hybrid model was proposed by fusing the twin support vector machine (TWSVM) with higher computational efficiency as the CNN classifier, and it was applied to the traffic sign recognition task. In order to improve the generalization ability of the model, the wavelet kernel function is introduced to deal with the nonlinear classification task. The method uses the network initialized from the ImageNet dataset to fine-tune the specific domain and intercept the inner layer of the network to extract the high abstract features of the traffic sign image. Finally, the TWSVM based on wavelet kernel function is used to identify the traffic signs, so as to effectively solve the over-fitting problem of traffic signs classification. On GTSRB and BELGIUMTS datasets, the validity and generalization ability of the improved model is verified by comparing with different kernel functions and different SVM classifiers.
基金L’Ore´al-UNESCO for the Women in Science Maghreb Program Grant Agreement No.4500410340.
文摘The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).
文摘This paper proposes a single-ended fault detection scheme for long transmission lines using support vector machine(SVM)for multi-terminal direct current systems based on modular multilevel converter(MMC-MTDC).The scheme overcomes existing detection difficulties in the protection of long transmission lines resulting from high grounding resistance and attenuation,and also avoids the sophisticated process of threshold value selection.The high-frequency components in the measured voltage extracted by a wavelet transform and the amplitude of the zero-mode set of the positive-sequence voltage are the inputs to a trained SVM.The output of the SVM determines the fault type.A model of a four-terminal DC power grid with overhead transmission lines is built in PSCAD/EMTDC.Simulation results of EMTDC confirm that the proposed scheme achieves 100%accuracy in detecting short-circuit faults with high resistance on long transmission lines.The proposed scheme eliminates mal-operation of DC circuit breakers when faced with power order changes or AC-side faults.Its robustness and time delay are also assessed and shown to have no perceptible effect on the speed and accuracy of the detection scheme,thus ensuring its reliability and stability.
基金supported by the National Natural Science Foundation of China (Nos.40401038 and 40871195)the National High-Tech Program of China (No.2007AA12Z162)+1 种基金Jiangsu Provincial Innovative Planning (No.CX08B 112Z)the Fundamental Research Funds for the Central Universities (2010QNA18)
文摘Many remote sensing image classifiers are limited in their ability to combine spectral features with spatial features. Multi-kernel classifiers, however, are capable of integrating spectral features with spatial or structural features using multiple kernels and summing them for final outputs. Using a support vector machine (SVM) as classifier, different multi-kernel classifiers are constructed and tested using 64-band Operational Modular Imaging Spectrometer II hyperspectral image of Changping Area, Beijing City. Results show that by integrating spectral and wavelet texture information, multi-kernel SVM classifiers can obtain more accurate classification results than sole-kernel SVM classifiers and cross-information SVM kernel classifiers. Moreover, when the multi-kernel SVM classifier is used, the combination of the first four principal components from principal component analysis and wavelet texture provides the highest accuracy (97.06%). Multi-kernel SVM is therefore an effective approach to improve the accuracy of hyperspectral image classification and to expand possibilities for remote sensing image interpretation and application.
基金This work was supported by the Science Foundation of Beijing Jiaotong University under Grant No.2005SM011.
文摘We propose a new method for image denoising combining wavelet transform and support vector machines (SVMs). A new image filter operator based on the least squares wavelet support vector machines (LSWSVMs) is presented. Noisy image can be denoised through this filter operator and wavelet thresholding technique. Experimental results show that the proposed method is better than the existing SVM regression with the Gaussian radial basis function (RBF) and polynomial RBF. Meanwhile, it can achieve better performance than other traditional methods such as the averaee filter and median filter.
基金National Natural Science Foundation of China (60573141, 60773041)the Hi-Tech Research and Development Program of China (2006AA01Z439)+5 种基金Natural Science Foundation of Jiangsu Province (BK2005146)High Technology Research Program of Jiangsu Province (BG2005037, BG2006001)Key Laboratory of Information Technology Processing of Jiangsu Province (kjs0606)High Technology Research Program of Nanjing City (2006RZ105)State Key Laboratory of Modern Communication (9140C1101010603)Jiangsu Provincial Research Scheme of Natural Science for Higher Education Institutions (07KJB520083)
文摘To enhance the detection accuracy and deduce false positive rate of distributed denial of service (DDoS) attack detection, a new machine learning method was proposed. With the analysis of support vector machine (SVM) and the wavelet kernel function theory, an admissive support vector kernel, which is a wavelet kernel constructed in this article, implements the combination of the wavelet technique with SVM. Then, wavelet support vector machine (WSVM) is applied to DDoS attack detections and as a classifying means to test the validity of the wavelet kernel function. Simulation experiments show that under the same conditions, the predictive ability of WSVM is improved and the computation burden is alleviated. The detection accuracy of WSVM is higher than the traditional SVM by about 4%, while its false positive is lower than the traditional SVM. Thus, for DDoS detections, WSVM shows better detection performance and is more adaptive to the changing network environment.