In order to meet the requirements of medical research,diagnosis and treatment,a new algorithm for image fusion based on the wavelet packet transform in conjunction with both subjective and objective assessments is put...In order to meet the requirements of medical research,diagnosis and treatment,a new algorithm for image fusion based on the wavelet packet transform in conjunction with both subjective and objective assessments is put forward in the paper.Compared to the wavelet transform,the wavelet packet transform is more intricate and effective for the medical image fusion.As indicated by the experimental results,parameters of the feedback system of the new algorithm are significantly superior to those of the wavelet transform,with practicability and accuracy.展开更多
A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduce...A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.展开更多
Fin stabilizers with fin-lift feedback control can shield the mapping error of calculation between the fin angle and fin lift force,which is in the fin stabilizer with fin-angle feedback control.In practice,there are ...Fin stabilizers with fin-lift feedback control can shield the mapping error of calculation between the fin angle and fin lift force,which is in the fin stabilizer with fin-angle feedback control.In practice,there are some technical difficulties in lift fin stabilizers,such as lift force detection and lift force sensor installation,so it cannot achieve the good antirolling performance.Therefore,a fin stabilizer system with fin-lift/fin-angle integrated control is brought forward.Data fusion based on wavelet denoising technology is employed in the system,which combines lift with fin angle local information from two sensors with different frequency ranges in order to eliminate redundant and contradictory information,and using complementary information to obtain the relative integrity of the lift force signal.The system model is established in this paper,and the fusion signal and the antirolling performance of this model are simulated respectively.The result shows that the control system can meet the antirolling need in different sea situations.展开更多
We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifte...We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
The integration of millimeter-wave(mmWave)communications and massive multiple input multiple output(MIMO)techniques is a promising solution to dramatically increase the 5G network throughput.By using large antenna arr...The integration of millimeter-wave(mmWave)communications and massive multiple input multiple output(MIMO)techniques is a promising solution to dramatically increase the 5G network throughput.By using large antenna arrays,beamforming can be adopted to improve the 5G capacity by employing spatial domain resources.In a frequency division duplexing(FDD)based 5G mmWave MIMO system,beamforming operation requires timely downlink channel state information(CSI)feedback.However,the rapid channel variations caused by short wavelength of mmWave band,and the high-level feedback information required due to the large number of antennas in massive MIMO system lead to the significantly increased beamforming overhead.In this paper,by exploiting the higher angular stability of such channels,we propose an angle-based beamforming scheme to reduce the feedback frequency and the number of feedback bits.To facilitate this approach users are initially selected to reduce the intra-zone interference before beamforming.Besides,location related feedback,which is not affected by the number of antennas,is adopted to reduce overhead.The simulation results show that two proposed user selection algorithms can adapt to scenarios with diverse requirements,while the feedback overhead of proposed angle-based beamforming algorithm is sharply reduce compared with that of CSIbased beamforming algorithm.展开更多
A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it ...A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it as criterion, the formula of synthesizing seismic wave is deduced. Using the design parameters specified in Chinese Seismic Design Code for buildings, seismic waves are synthesized. Moreover, the method of selecting wavelet bases in synthesizing seismic wave and the influence of the damping ratio on synthesizing results are analyzed. The results show that the synthesis seismic waves using wavelet bases can represent the characteristics of the seismic wave as well as the ground characteristic period, and have good time-frequency non-stationary.展开更多
When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We us...When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.展开更多
Approaches to the study of formation keeping for multiple mobile robots are analyzed and a behavior-based robot model is built in this paper. And, a kind of coordination architecture is presented, which is similar to ...Approaches to the study of formation keeping for multiple mobile robots are analyzed and a behavior-based robot model is built in this paper. And, a kind of coordination architecture is presented, which is similar to the infantry squad organization and is used to realize multiple mobile robots to keep formations. Simulations verify the validity of the approach to keep formation, which combines the behavior-based method and formation feedback. The effects of formation feedback on the performance of the system are analyzed.展开更多
In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study h...In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.展开更多
Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation...Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.展开更多
The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as ...The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.展开更多
This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spo...This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment,the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.展开更多
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying...This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.展开更多
For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty.Moreover, we analyze the influence of feed...For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty.Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty.Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system.For the homodyne feedback control F =λσx(or F =λσy), due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ, the exchange of feedback coefficients will cause variations of the entropic uncertainty.When the feedback coefficient corresponding to the memory qubit B is larger(λB >λA), the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system.However, for the feedback control F =λσz, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.展开更多
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discus...The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.展开更多
Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the re...Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the results vary greatly. To overcome this problem and to improve the accuracy and efficiency, a new method denoted by Natural-based Wavelet Method is introduced and extended. It can be proved that the proposed method in fact is a special class of discrete wavelet. At first, two numerical examples are designed to show the capacity of the novel method. Second, this method is applied to a precipitation series. According to wavelet analysis and short-range precipitation prediction, this precipitation exists a faintly increasing trend. Through the analysis, the studied precipitation has two major periods: 11 and 41 years. The results validate that the Natural-based Wavelet Method used in application of multi-complicated observed data is suitable. It is easy to write the source code of the proposed method. When new information appears, new information can be easily added into the original sequence, this is another advantage of the proposed method.展开更多
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller b...Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.展开更多
We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider t...We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider their use in the approximation of functions and in numerical quadrature. We focus on two applications: integral kernel sparsification and digital image compression and reconstruction. In these application areas the use of these wavelet bases gives very satisfactory results.展开更多
The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hyb...The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hybridization, and correlation, which make system implementation difficult. The conventional scheduling algorithm can not meet the demands of system implementation in the software-based CNC system completely. The uncertainty factors when running real-time tasks affect control performance by degrading manufacturing accuracy as a result of system resource and processor use restrictions. To address the technical difficulty of embedded system implementation, a novel fuzzy feedback scheduling algorithm based on output jitter of key real-time tasks for a software-based CNC system is proposed. Time characteristics, such as sampling jitter, input-output jitter, and non-schedulability are discussed, followed by quantification through simulations of the impact of time characteristics on manufacturing accuracy. On the basis of this research, the scheduler architecture is designed, and then the algorithm table is calculated. When the system resource changes, the key periodic real-time tasks meet their deadlines by means of dynamically adjusting the task period. The simulated results show that the machining precision rises by an order of magnitude for the proposed scheduler in resource-constrained software-based CNC systems. Moreover, unlike conventional feedback scheduling methods, the algorithm in this paper does not rely on the availability of task execution times and is easy to implement while incurring only a small overhead.展开更多
文摘In order to meet the requirements of medical research,diagnosis and treatment,a new algorithm for image fusion based on the wavelet packet transform in conjunction with both subjective and objective assessments is put forward in the paper.Compared to the wavelet transform,the wavelet packet transform is more intricate and effective for the medical image fusion.As indicated by the experimental results,parameters of the feedback system of the new algorithm are significantly superior to those of the wavelet transform,with practicability and accuracy.
文摘A method of fairing B spline surfaces by wavelet decomposition is investigated. The wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces are described in detail. A method is introduced to approximate a B spline surface by a quasi uniform one. An error control approach for wavelet based fairing is suggested. Samples are given to show the feasibility of the algorithms presented in this paper. The practice showed that the wavelet based fairing is better than energy based one in case where the number of vertices of the B spline surface is greater than 1000. The quantitative variance of the approximation error in accordance with the change of decomposition levels needs to be further explored.
基金supported by the "Ship Control Engineering" Emphasis Project of 211 Engineering in the Tenth Five-Year Plan
文摘Fin stabilizers with fin-lift feedback control can shield the mapping error of calculation between the fin angle and fin lift force,which is in the fin stabilizer with fin-angle feedback control.In practice,there are some technical difficulties in lift fin stabilizers,such as lift force detection and lift force sensor installation,so it cannot achieve the good antirolling performance.Therefore,a fin stabilizer system with fin-lift/fin-angle integrated control is brought forward.Data fusion based on wavelet denoising technology is employed in the system,which combines lift with fin angle local information from two sensors with different frequency ranges in order to eliminate redundant and contradictory information,and using complementary information to obtain the relative integrity of the lift force signal.The system model is established in this paper,and the fusion signal and the antirolling performance of this model are simulated respectively.The result shows that the control system can meet the antirolling need in different sea situations.
基金Supported by the National Natural Science Foundation of China under Grant No F050306
文摘We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
文摘The integration of millimeter-wave(mmWave)communications and massive multiple input multiple output(MIMO)techniques is a promising solution to dramatically increase the 5G network throughput.By using large antenna arrays,beamforming can be adopted to improve the 5G capacity by employing spatial domain resources.In a frequency division duplexing(FDD)based 5G mmWave MIMO system,beamforming operation requires timely downlink channel state information(CSI)feedback.However,the rapid channel variations caused by short wavelength of mmWave band,and the high-level feedback information required due to the large number of antennas in massive MIMO system lead to the significantly increased beamforming overhead.In this paper,by exploiting the higher angular stability of such channels,we propose an angle-based beamforming scheme to reduce the feedback frequency and the number of feedback bits.To facilitate this approach users are initially selected to reduce the intra-zone interference before beamforming.Besides,location related feedback,which is not affected by the number of antennas,is adopted to reduce overhead.The simulation results show that two proposed user selection algorithms can adapt to scenarios with diverse requirements,while the feedback overhead of proposed angle-based beamforming algorithm is sharply reduce compared with that of CSIbased beamforming algorithm.
基金'Qing Lan' Talent Engineering Funds by Lanzhou Jiaotong University (QL-05-08A).
文摘A novel method of synthesizing seismic wave using wavelet reconstruction is proposed and compared with the traditional method of using theory of Fourier transform. By adjusting the frequency band energy and taking it as criterion, the formula of synthesizing seismic wave is deduced. Using the design parameters specified in Chinese Seismic Design Code for buildings, seismic waves are synthesized. Moreover, the method of selecting wavelet bases in synthesizing seismic wave and the influence of the damping ratio on synthesizing results are analyzed. The results show that the synthesis seismic waves using wavelet bases can represent the characteristics of the seismic wave as well as the ground characteristic period, and have good time-frequency non-stationary.
文摘When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.
文摘Approaches to the study of formation keeping for multiple mobile robots are analyzed and a behavior-based robot model is built in this paper. And, a kind of coordination architecture is presented, which is similar to the infantry squad organization and is used to realize multiple mobile robots to keep formations. Simulations verify the validity of the approach to keep formation, which combines the behavior-based method and formation feedback. The effects of formation feedback on the performance of the system are analyzed.
文摘In preceding papers, the present authors proposed the application of the mollification based on wavelets to the calculation of the fractional derivative (fD) or the derivative of a function involving noise. We study here the application of that method to the detection of edge of a function. Mathieu et al. proposed the CRONE detector for a detection of an edge of an image. For a function without noise, we note that the CRONE detector is expressed as the Riesz fractional derivative (fD) of the derivative. We study here the application of the mollification to the calculation of the Riesz fD of the derivative for a data involving noise, and compare the results with the results obtained by our method of applying simple derivative to mollified data.
基金Supported by the National Natural Science Foundation of China,no.69672039
文摘Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme is proposed. It can reduce the amount of computation by exploiting the decimation properties and keep the advantage of quasi-orthogonal transform of the discrete wavelet, transform (DWT). The issue has been supported by computer simulations.
文摘The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analysis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based controls are employed, where the unmeasured state variables are estimated for practical implementations. These observer-based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic ECG signal processing devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374096)
文摘This paper studies quantum discord of two qutrits coupled to their own environments independently and coupled to the same environment simultaneously under quantum-jump-based feedback control. Our results show that spontaneous emission, quantum feedback parameters, classical driving, initial state, and detection efficiency all affect the evolution of quantum discord in a two-qutrit system. We find that under the condition of designing proper quantum-jump-based feedback parameters, quantum discord can be protected and prepared. In the case where two qutrits are independently coupled to their own environments, classical driving, spontaneous emission, and low detection efficiency have negative effect on the protection of quantum discord. For different initial states, it is found that the evolution of quantum discord under the control of appropriate parameters is similar. In the case where two qutrits are simultaneously coupled to the same environment,the classical driving plays a positive role in the generation of quantum discord, but spontaneous emission and low detection efficiency have negative impact on the generation of quantum discord. Most importantly, we find that the steady discord depends on feedback parameters, classical driving, and detection efficiency, but not on the initial state.
文摘This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61663016 and 11404150)
文摘For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty.Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty.Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system.For the homodyne feedback control F =λσx(or F =λσy), due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ, the exchange of feedback coefficients will cause variations of the entropic uncertainty.When the feedback coefficient corresponding to the memory qubit B is larger(λB >λA), the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system.However, for the feedback control F =λσz, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.
文摘The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.11461026,11361024,51378206 and 11661036)the Provincial Natural Science Foundation(Grant No.2017BAB201009)
文摘Wavelet method is often used in analyzing trend and period of time sequence. When using wavelet method one serious problem is different chosen wavelet basis and scale would lead to different results. Sometimes, the results vary greatly. To overcome this problem and to improve the accuracy and efficiency, a new method denoted by Natural-based Wavelet Method is introduced and extended. It can be proved that the proposed method in fact is a special class of discrete wavelet. At first, two numerical examples are designed to show the capacity of the novel method. Second, this method is applied to a precipitation series. According to wavelet analysis and short-range precipitation prediction, this precipitation exists a faintly increasing trend. Through the analysis, the studied precipitation has two major periods: 11 and 41 years. The results validate that the Natural-based Wavelet Method used in application of multi-complicated observed data is suitable. It is easy to write the source code of the proposed method. When new information appears, new information can be easily added into the original sequence, this is another advantage of the proposed method.
基金This project is supported by National Natural Science Foundation of China (No.50205050).
文摘Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings.
文摘We present wavelet bases made of piecewise (low degree) polynomial functions with an (arbitrary) assigned number of vanishing moments. We study some of the properties of these wavelet bases;in particular we consider their use in the approximation of functions and in numerical quadrature. We focus on two applications: integral kernel sparsification and digital image compression and reconstruction. In these application areas the use of these wavelet bases gives very satisfactory results.
基金supported by National Natural Science Foundation of China(Grant No.50875090,Grant No.50905063)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA4Z111)China Postdoctoral Science Foundation (Grant No.20090460769)
文摘The software-based computer numerical control(CNC) system includes three types of tasks: periodic real-time tasks, aperiodic real-time tasks, and non-real-time tasks. The tasks are characterized by concurrency, hybridization, and correlation, which make system implementation difficult. The conventional scheduling algorithm can not meet the demands of system implementation in the software-based CNC system completely. The uncertainty factors when running real-time tasks affect control performance by degrading manufacturing accuracy as a result of system resource and processor use restrictions. To address the technical difficulty of embedded system implementation, a novel fuzzy feedback scheduling algorithm based on output jitter of key real-time tasks for a software-based CNC system is proposed. Time characteristics, such as sampling jitter, input-output jitter, and non-schedulability are discussed, followed by quantification through simulations of the impact of time characteristics on manufacturing accuracy. On the basis of this research, the scheduler architecture is designed, and then the algorithm table is calculated. When the system resource changes, the key periodic real-time tasks meet their deadlines by means of dynamically adjusting the task period. The simulated results show that the machining precision rises by an order of magnitude for the proposed scheduler in resource-constrained software-based CNC systems. Moreover, unlike conventional feedback scheduling methods, the algorithm in this paper does not rely on the availability of task execution times and is easy to implement while incurring only a small overhead.