期刊文献+
共找到29,936篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced Fourier Transform Using Wavelet Packet Decomposition
1
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier transform wavelet packet Decomposition Time-Frequency Analysis Non-Stationary Signals
下载PDF
Efficient simulation of spatially correlated non-stationary ground motions by wavelet-packet algorithm and spectral representation method
2
作者 Ji Kun Cao Xuyang +1 位作者 Wang Suyang Wen Ruizhi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期799-814,共16页
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ... Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration. 展开更多
关键词 non-stationarity time-varying spectrum wavelet packet transform(WPT) spectral representation method(SRM) response spectrum spatially varying recordings
下载PDF
Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
3
作者 Mahmood A.Mahmood Khalaf Alsalem 《Computers, Materials & Continua》 SCIE EI 2024年第3期3431-3448,共18页
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa... Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases. 展开更多
关键词 Olive leaf diseases wavelet transform deep learning feature fusion
下载PDF
Research on the longitudinal protection of a through-type cophase traction direct power supply system based on the empirical wavelet transform
4
作者 Lu Li Zeduan Zhang +5 位作者 Wang Cai Qikang Zhuang Guihong Bi Jian Deng Shilong Chen Xiaorui Kan 《Global Energy Interconnection》 EI CSCD 2024年第2期206-216,共11页
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti... This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances. 展开更多
关键词 Through-type Cophase traction direct power supply system Traction network Empirical wavelet transform(EWT) Longitudinal protection
下载PDF
Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy
5
作者 Lili Bai Wenhui Li +3 位作者 He Ren Feng Li TaoYan Lirong Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4513-4531,共19页
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac... Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery. 展开更多
关键词 Rotating machinery quantum theory nonlinear quantum permutation entropy Flexible Analytic wavelet transform(FAWT) feature extraction
下载PDF
Performance of Continuous Wavelet Transform over Fourier Transform in Features Resolutions
6
作者 Michael K. Appiah Sylvester K. Danuor Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期87-105,共19页
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d... This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification. 展开更多
关键词 Continuous wavelet transform (CWT) Fast Fourier transform (FFT) Reservoir Characterization Tano Basin Seismic Data Spectral Decomposition
下载PDF
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
7
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric Vibrator Noise Analysis Signal Decomposing Variational Mode Decomposition Empirical wavelet transform
下载PDF
Anomaly Detection Based on Discrete Wavelet Transformation for Insider Threat Classification
8
作者 Dong-Wook Kim Gun-Yoon Shin Myung-Mook Han 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期153-164,共12页
Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many... Unlike external attacks,insider threats arise from legitimate users who belong to the organization.These individuals may be a potential threat for hostile behavior depending on their motives.For insider detection,many intrusion detection systems learn and prevent known scenarios,but because malicious behavior has similar patterns to normal behavior,in reality,these systems can be evaded.Furthermore,because insider threats share a feature space similar to normal behavior,identifying them by detecting anomalies has limitations.This study proposes an improved anomaly detection methodology for insider threats that occur in cybersecurity in which a discrete wavelet transformation technique is applied to classify normal vs.malicious users.The discrete wavelet transformation technique easily discovers new patterns or decomposes synthesized data,making it possible to distinguish between shared characteristics.To verify the efficacy of the proposed methodology,experiments were conducted in which normal users and malicious users were classified based on insider threat scenarios provided in Carnegie Mellon University’s Computer Emergency Response Team(CERT)dataset.The experimental results indicate that the proposed methodology with discrete wavelet transformation reduced the false-positive rate by 82%to 98%compared to the case with no wavelet applied.Thus,the proposed methodology has high potential for application to similar feature spaces. 展开更多
关键词 Anomaly detection CYBERSECURITY discrete wavelet transformation insider threat classification
下载PDF
A method to compress vibration signals using wavelet packet transformation combined with sub-band vector quantization
9
作者 翁浩 Gao Jinji Jiang Zhinong 《High Technology Letters》 EI CAS 2013年第4期443-448,共6页
A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibratin... A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission. 展开更多
关键词 vibration signal compression wavelet packet transformation (WPT) discrete cosine transformation (DCT) sub-band vector quantization (SVQ)
下载PDF
A New HFRT Algorithm Based on Maximal Overlap Discrete Wavelet Packet Transformation
10
作者 Hong-Tao Zhang Jian-Ming Liao 《Journal of Electronic Science and Technology of China》 2007年第2期146-148,共3页
The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on... The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform. 展开更多
关键词 FAULT-DETECTION high frequency resonant technique maximal overlap wavelet packet transforms soil embedded pipe.
下载PDF
Flight Flutter Modal Parameters Identification with Atmospheric Turbulence Excitation Based on Wavelet Transformation 被引量:4
11
作者 张波 史忠科 李健君 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期394-401,共8页
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters... In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity. 展开更多
关键词 flight flutter modal parameters identification atmospheric turbulence excitation wavelet transformation random decrement technique acceleration response
下载PDF
Application of fast wavelet transformation in signal processing of MEMS gyroscope 被引量:6
12
作者 吉训生 王寿荣 许宜申 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期510-513,共4页
Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t... Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal. 展开更多
关键词 wavelet transformation signal processing GYROSCOPE THRESHOLD
下载PDF
基于小波变换和CNN-Transformer模型的测井储层流体识别
13
作者 龚安 张恒 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第4期108-116,共9页
针对具有复杂储集空间和极强的非均质性的低孔低渗储层,常规测井响应特征不够明显,使用传统解释手段难以有效识别储层流体的问题,提出了一种基于小波变换和CNN-Transformer混合模型的储层流体识别方法。首先,使用小波变换将测井信号从... 针对具有复杂储集空间和极强的非均质性的低孔低渗储层,常规测井响应特征不够明显,使用传统解释手段难以有效识别储层流体的问题,提出了一种基于小波变换和CNN-Transformer混合模型的储层流体识别方法。首先,使用小波变换将测井信号从时域扩展到时频域,并生成时频谱图以增强信号特征,然后使用滑动时窗沿着测井曲线深度方向滑动采样,获取代表解释深度处地层信息的频谱特征图,最后,通过训练CNN-transformer模型深度挖掘特征图信息,实现储层流体识别。混合模型在利用储层对应深度处测井数据的同时,又兼顾测井曲线随深度的变化趋势和地层前后信息的关联性,挖掘时频谱图的局部细节和全局特征表示,自动识别流体类型。将模型应用于大港油田22口实测测井资料中,并与CNN和BiLSTM等多个模型的流体识别效果进行对比分析,基于小波变换和CNN-Transformer模型识别效果明显优于其他方法,在测试集上识别准确率达到了92.7%。研究结果表明该方法可以作为低孔渗油藏常规测井资料识别储层流体的有效手段,为流体评价提供了新思路。 展开更多
关键词 流体识别 测井曲线 小波变换 CNN-transformer
下载PDF
Ignition Pattern Analysis for Automotive Engine Trouble Diagnosis Using Wavelet Packet Transform and Support Vector Machines 被引量:11
14
作者 VONG Chi-man WONG Pak-kin +1 位作者 TAM Lap-mou ZHANG Zaiyong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期870-878,共9页
Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her e... Engine spark ignition is an important source for diagnosis of engine faults.Based on the waveform of the ignition pattern,a mechanic can guess what may be the potential malfunctioning parts of an engine with his/her experience and handbooks.However,this manual diagnostic method is imprecise because many spark ignition patterns are very similar.Therefore,a diagnosis needs many trials to identify the malfunctioning parts.Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification.To tackle this problem,an intelligent diagnosis system was established based on ignition patterns.First,the captured patterns were normalized and compressed.Then wavelet packet transform(WPT) was employed to extract the representative features of the ignition patterns.Finally,a classification system was constructed by using multi-class support vector machines(SVM) and the extracted features.The classification system can intelligently classify the most likely engine fault so as to reduce the number of diagnosis trials.Experimental results show that SVM produces higher diagnosis accuracy than the traditional multilayer feedforward neural network.This is the first trial on the combination of WPT and SVM to analyze ignition patterns and diagnose automotive engines. 展开更多
关键词 automotive engine ignition pattern diagnosis pattern classification wavelet packet transform support vector machines.
下载PDF
FEATURE EXTRACTION OF VIBRATION SIGNALS BASED ON WAVELET PACKET TRANSFORM 被引量:9
15
作者 ShaoJunpeng JiaHuijuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期25-27,共3页
A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method ... A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective. 展开更多
关键词 wavelet packet transform Feature extraction Vibration signal
下载PDF
Measurement of interstation phase velocity by wavelet transformation 被引量:16
16
作者 Qingju Wu Xiufen Zheng Jiatie Pan Fengxue Zhang Guangcheng Zhang 《Earthquake Science》 CSCD 2009年第4期425-429,共5页
In this paper, we present wavelet transformation method to measure interstation phase velocity. We use Morlet wavelet function as mother wavelet to filter two seismograms at various period of interest, and correlate t... In this paper, we present wavelet transformation method to measure interstation phase velocity. We use Morlet wavelet function as mother wavelet to filter two seismograms at various period of interest, and correlate the wavelet filtered seismograms to form cross-correlogram. If both wavelet filtered signals are in phase at that period, the phase of the cross-correlogram is a minimum. Using 3-spline interpolation to transform cross-correlation matrix to a phase velocity verse period image, it is convenient for us to measure interstation phase velocity. 展开更多
关键词 dispesion phase velocity wavelet transform
下载PDF
Damage Detection Methods for Offshore Platforms Based on Wavelet Packet Transform 被引量:4
17
作者 李东升 张兆德 王德禹 《China Ocean Engineering》 SCIE EI 2005年第4期701-710,共10页
The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic par... The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic parameters, such as dynamic response, are not sensitive, and it is very difficult to predict the existence of damage. The present paper aims to describe how to find small damage by the use of wavelet packet transform. As the wavelet packet transform can be used to quickly find the singularity of the response signal on different scales, the acceleration signal of a damaged offshore platform in the time domain is transformed through the wavelet packet. Experimental results show that the Daubechies 4 wavelet transform can be used to detect damage. 展开更多
关键词 offshore platform damage detection wavelet packet transform
下载PDF
Radar Emitter Signal Recognition Using Wavelet Packet Transform and Support Vector Machines 被引量:7
18
作者 金炜东 张葛祥 胡来招 《Journal of Southwest Jiaotong University(English Edition)》 2006年第1期15-22,共8页
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t... This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method. 展开更多
关键词 Signal processing Radar emitter signals wavelet packet transform Rough set theory Support vector machine
下载PDF
Multi-Focus Image Fusion Based on Wavelet Transformation 被引量:4
19
作者 Peng Zhang Ying-Xun Tang +1 位作者 Yan-Hua Liang Xu-Bo Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期124-128,共5页
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi... In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application. 展开更多
关键词 variance MEASURE image fusion wavelet transformation multi-resolution analysis
下载PDF
Fourier and wavelet transformations application to fault detection of induction motor with stator current 被引量:6
20
作者 LEE Sang-hyuk 王一奇 SONG Jung-il 《Journal of Central South University》 SCIE EI CAS 2010年第1期93-101,共9页
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ... Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103. 展开更多
关键词 Fourier transformation wavelet transformation induction motor fault detection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部