We describe the target selection algorithm for the low latitude disk por- tion of the LAMOST Pilot Survey, which aims to test systems in preparation for the LAMOST spectroscopic survey. We use the PPMXL astrometric ca...We describe the target selection algorithm for the low latitude disk por- tion of the LAMOST Pilot Survey, which aims to test systems in preparation for the LAMOST spectroscopic survey. We use the PPMXL astrometric catalog, which provides positions, proper motions, B/R/I magnitudes (mostly) from USNO-B and d/H/Ks from the Two Micron All Sky Survey (2MASS) as well. We chose eight plates along the Galactic plane, in the region 0° 〈 α° 〈 67° and 42° 〈 δ 〈 59°, which cover 22 known open clusters with a range of ages. Adjacent plates may have some small overlapping area. Each plate covers an area of 2.5° in radius, with its cen- tral star (for the Shack-Hartmann guider) brighter than 8th magnitude. For each plate, we create an input catalog in the magnitude range 11.3 〈 Imag 〈 16.3 and Bmag available from PPMXL. The stars are selected to satisfy the requirements of the fiber positioning system and have a uniform distribution in the I vs. B - I color-magnitude diagram. Our final input catalog consists of 12 000 objects on each of eight plates that are observable during the winter observing season from the Xinglong Station of the National Astronomical Observatory of China.展开更多
Long-term and synchronous monitoring of PMIo and PM2.s was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by...Long-term and synchronous monitoring of PMIo and PM2.s was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way), Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-Bway) to PMIo, and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM2.s. Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PMIo, and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM2.s. The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM^o (12.7%) and PMzs (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PMao (9.8%) and secondary nitrate & secondary organic carbon from ENE for PMzs (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and tn dovolon offoctive nolhltion control gtrateMeg.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos. 11173044(PI: Hou), 11073038 (PI: Chen), 10573022, 10973015 and 11061120454 (PI: Deng))the Key Project No.10833005 (PI: Hou)+2 种基金the Group Innovation Project No.11121062the US National Science Foundation grant AST 09-37523Chinese Academy of Sciences is acknowledged for providing initial support from grant number GJHZ 200812
文摘We describe the target selection algorithm for the low latitude disk por- tion of the LAMOST Pilot Survey, which aims to test systems in preparation for the LAMOST spectroscopic survey. We use the PPMXL astrometric catalog, which provides positions, proper motions, B/R/I magnitudes (mostly) from USNO-B and d/H/Ks from the Two Micron All Sky Survey (2MASS) as well. We chose eight plates along the Galactic plane, in the region 0° 〈 α° 〈 67° and 42° 〈 δ 〈 59°, which cover 22 known open clusters with a range of ages. Adjacent plates may have some small overlapping area. Each plate covers an area of 2.5° in radius, with its cen- tral star (for the Shack-Hartmann guider) brighter than 8th magnitude. For each plate, we create an input catalog in the magnitude range 11.3 〈 Imag 〈 16.3 and Bmag available from PPMXL. The stars are selected to satisfy the requirements of the fiber positioning system and have a uniform distribution in the I vs. B - I color-magnitude diagram. Our final input catalog consists of 12 000 objects on each of eight plates that are observable during the winter observing season from the Xinglong Station of the National Astronomical Observatory of China.
基金supported by the Tianjin Natural Science Foundation(No.16JCQNJC08700)the Fundamental Research Funds for the Central Universities+4 种基金National Key Research and Development Program of China(No.2016YFC0208500)the National Natural Science Foundation of China(No.21407174)the Tianjin Research Program of Application Foundation(No.14JCQNJC08100)the Tianjin Science and Technology Project(Nos.16YFZCSF00260,14ZCDGSF00027,14ZCDGSF00029)the Special Funds for Research on Public Welfares of the Ministry of Environmental Protection of China(201309072)
文摘Long-term and synchronous monitoring of PMIo and PM2.s was conducted in Chengdu in China from 2007 to 2013. The levels, variations, compositions and size distributions were investigated. The sources were quantified by two-way and three-way receptor models (PMF2, ME2-2way and ME2-3way), Consistent results were found: the primary source categories contributed 63.4% (PMF2), 64.8% (ME2-2way) and 66.8% (ME2-Bway) to PMIo, and contributed 60.9% (PMF2), 65.5% (ME2-2way) and 61.0% (ME2-3way) to PM2.s. Secondary sources contributed 31.8% (PMF2), 32.9% (ME2-2way) and 31.7% (ME2-3way) to PMIo, and 35.0% (PMF2), 33.8% (ME2-2way) and 36.0% (ME2-3way) to PM2.s. The size distribution of source categories was estimated better by the ME2-3way method. The three-way model can simultaneously consider chemical species, temporal variability and PM sizes, while a two-way model independently computes datasets of different sizes. A method called source directional apportionment (SDA) was employed to quantify the contributions from various directions for each source category. Crustal dust from east-north-east (ENE) contributed the highest to both PM^o (12.7%) and PMzs (9.7%) in Chengdu, followed by the crustal dust from south-east (SE) for PMao (9.8%) and secondary nitrate & secondary organic carbon from ENE for PMzs (9.6%). Source contributions from different directions are associated with meteorological conditions, source locations and emission patterns during the sampling period. These findings and methods provide useful tools to better understand PM pollution status and tn dovolon offoctive nolhltion control gtrateMeg.