Random Waypoint模型是自组网经常使用的移动模型,对这种移动模型下运动节点的空间概率分布进行了研究,得到了一维与二维区域的运动节点空间概率分布的精确公式,解决了自组网仿真模型的一个遗留问题·研究结果为基于Random Waypoin...Random Waypoint模型是自组网经常使用的移动模型,对这种移动模型下运动节点的空间概率分布进行了研究,得到了一维与二维区域的运动节点空间概率分布的精确公式,解决了自组网仿真模型的一个遗留问题·研究结果为基于Random Waypoint移动模型的自组网理论的推导、证明、仿真与应用提供了理论依据,对基于该模型的自组网仿真具有实践指导意义·展开更多
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w...To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.展开更多
Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planner...Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.展开更多
This paper considers a variation on the Dubins path problem and proposes an improved waypoint navigation (WN) algorithm called Dubins waypoint navigation (DWN). Based on the Dubins path problem, an algorithm is develo...This paper considers a variation on the Dubins path problem and proposes an improved waypoint navigation (WN) algorithm called Dubins waypoint navigation (DWN). Based on the Dubins path problem, an algorithm is developed that is updated in real-time with a horizon of three waypoints. The purpose of DWN is to overcome a problem that we find in existing WN for small-class fixed-wing unmanned aerial vehicles (UAV) of not accurately reaching waypoints. This problem results at times in high overshoot and, in the presence of wind disturbances, it can cause a vehicle to miss the waypoint and swirl around it. To prevent this, the DWN creates “new waypoints” that are in the background, called turning points. Examples illustrate the improvement of the performance of WN achieved using the DWN algorithm in terms of the targeting of waypoints while reducing fuel and time.展开更多
Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controllin...Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controlling multi-UAVs is studied to reach multi-waypoints simultaneously under the view of visual navigation technology. A model based on the stable-shortest pythagorean-hodograph (PH) curve is established, which could not only satisfy the demands of visual navigation and control law, but also be easy to compute. Based on the model, a planning algorithm to guide multi-UAVs to reach multi-waypoints at the same time without collisions is developed. The simulation results show that the paths have shorter distance and smaller curvature than traditional methods, which could help to avoid collisions.展开更多
In research on small mobile robots and biomimetic robots, locomotion ability remains a major issue despite many advances in technology. However, evolution has led to there being many real animals capable of exceUent l...In research on small mobile robots and biomimetic robots, locomotion ability remains a major issue despite many advances in technology. However, evolution has led to there being many real animals capable of exceUent locomotion. This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task. We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning". The parasitic robot, which is attached to the turtle, can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction. After training sessions over five weeks, the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task. This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields, and could also act as a useful interaction system for the behavioral sciences.展开更多
In the network field,Wireless Sensor Networks(WSN)contain prolonged attention due to afresh augmentations.Industries like health care,traffic,defense,and many more systems espoused the WSN.These networks contain tiny ...In the network field,Wireless Sensor Networks(WSN)contain prolonged attention due to afresh augmentations.Industries like health care,traffic,defense,and many more systems espoused the WSN.These networks contain tiny sensor nodes containing embedded processors,TinyOS,memory,and power source.Sensor nodes are responsible for forwarding the data packets.To manage all these components,there is a need to select appropriate parameters which control the quality of service of WSN.Multiple sensor nodes are involved in transmitting vital information,and there is a need for secure and efficient routing to reach the quality of service.But due to the high cost of the network,WSN components have limited resources to manage the network.There is a need to design a lightweight solution that ensures the quality of service in WSN.In this given manner,this study provides the quality of services in a wireless sensor network with a security mechanism.An incorporated hybrid lightweight security model is designed in which random waypoint mobility(RWM)model and grey wolf optimization(GWO)is used to enhance service quality and maintain security with efficient routing.MATLAB version 16 andNetwork Stimulator 2.35(NS2.35)are used in this research to evaluate the results.The overall cost factor is reduced at 60%without the optimization technique and 90.90%reduced by using the optimization technique,which is assessed by calculating the signal-to-noise ratio,overall energy nodes,and communication overhead.展开更多
提出一种基于卫星航点的分段路由(waypoint-segment routing,WSR)算法,WSR算法以可预测的卫星网络拓扑运动周期为基础,根据卫星节点链路状态确定卫星航点的位置;利用分段路由灵活规划分组传输路径的机制,提前响应网络拓扑变化,计算得到...提出一种基于卫星航点的分段路由(waypoint-segment routing,WSR)算法,WSR算法以可预测的卫星网络拓扑运动周期为基础,根据卫星节点链路状态确定卫星航点的位置;利用分段路由灵活规划分组传输路径的机制,提前响应网络拓扑变化,计算得到一条不受网络拓扑快照切换影响的传输路径。基于NS-3仿真平台进行仿真实验,设置源节点与目标节点在反向缝同侧与不同侧两种场景,选取优化链路状态路由(optimized link state routing,OLSR)算法和最短路径算法与WSR进行时延抖动与分组丢失率的对比分析。实验证明WSR与OLSR相比,两种场景下最大时延抖动分别降低46 ms与126 ms,分组丢失率分别降低30%和21%,并且能够解决拓扑快照切换导致分组传输路径中断的问题。展开更多
基金the Defense Pre-Research Project ofthe"Tenth Five-Year-Plan"of China ( No.41316.4.2) the National Defense Basic Research Foundation under grant No.51416040101HT0117.
基金supported by the National Natural Science Foundation of China(61272011)
文摘To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.
文摘Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.
文摘This paper considers a variation on the Dubins path problem and proposes an improved waypoint navigation (WN) algorithm called Dubins waypoint navigation (DWN). Based on the Dubins path problem, an algorithm is developed that is updated in real-time with a horizon of three waypoints. The purpose of DWN is to overcome a problem that we find in existing WN for small-class fixed-wing unmanned aerial vehicles (UAV) of not accurately reaching waypoints. This problem results at times in high overshoot and, in the presence of wind disturbances, it can cause a vehicle to miss the waypoint and swirl around it. To prevent this, the DWN creates “new waypoints” that are in the background, called turning points. Examples illustrate the improvement of the performance of WN achieved using the DWN algorithm in terms of the targeting of waypoints while reducing fuel and time.
文摘Abstract: There is a high demand for unmanned aerial vehicle (UAV) flight stability when using vi- sion as a detection method for navigation control. To meet such demand, a new path planning meth- od for controlling multi-UAVs is studied to reach multi-waypoints simultaneously under the view of visual navigation technology. A model based on the stable-shortest pythagorean-hodograph (PH) curve is established, which could not only satisfy the demands of visual navigation and control law, but also be easy to compute. Based on the model, a planning algorithm to guide multi-UAVs to reach multi-waypoints at the same time without collisions is developed. The simulation results show that the paths have shorter distance and smaller curvature than traditional methods, which could help to avoid collisions.
文摘In research on small mobile robots and biomimetic robots, locomotion ability remains a major issue despite many advances in technology. However, evolution has led to there being many real animals capable of exceUent locomotion. This paper presents a "parasitic robot system" whereby locomotion abilities of an animal are applied to a robot task. We chose a turtle as our first host animal and designed a parasitic robot that can perform "operant conditioning". The parasitic robot, which is attached to the turtle, can induce object-tracking behavior of the turtle toward a Light Emitting Diode (LED) and positively reinforce the behavior through repeated stimulus-response interaction. After training sessions over five weeks, the robot could successfully control the direction of movement of the trained turtles in the waypoint navigation task. This hybrid animal-robot interaction system could provide an alternative solution to some of the limitations of conventional mobile robot systems in various fields, and could also act as a useful interaction system for the behavioral sciences.
基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Collaboration Funding program grant code NU/RC/SERC/11/7。
文摘In the network field,Wireless Sensor Networks(WSN)contain prolonged attention due to afresh augmentations.Industries like health care,traffic,defense,and many more systems espoused the WSN.These networks contain tiny sensor nodes containing embedded processors,TinyOS,memory,and power source.Sensor nodes are responsible for forwarding the data packets.To manage all these components,there is a need to select appropriate parameters which control the quality of service of WSN.Multiple sensor nodes are involved in transmitting vital information,and there is a need for secure and efficient routing to reach the quality of service.But due to the high cost of the network,WSN components have limited resources to manage the network.There is a need to design a lightweight solution that ensures the quality of service in WSN.In this given manner,this study provides the quality of services in a wireless sensor network with a security mechanism.An incorporated hybrid lightweight security model is designed in which random waypoint mobility(RWM)model and grey wolf optimization(GWO)is used to enhance service quality and maintain security with efficient routing.MATLAB version 16 andNetwork Stimulator 2.35(NS2.35)are used in this research to evaluate the results.The overall cost factor is reduced at 60%without the optimization technique and 90.90%reduced by using the optimization technique,which is assessed by calculating the signal-to-noise ratio,overall energy nodes,and communication overhead.
文摘提出一种基于卫星航点的分段路由(waypoint-segment routing,WSR)算法,WSR算法以可预测的卫星网络拓扑运动周期为基础,根据卫星节点链路状态确定卫星航点的位置;利用分段路由灵活规划分组传输路径的机制,提前响应网络拓扑变化,计算得到一条不受网络拓扑快照切换影响的传输路径。基于NS-3仿真平台进行仿真实验,设置源节点与目标节点在反向缝同侧与不同侧两种场景,选取优化链路状态路由(optimized link state routing,OLSR)算法和最短路径算法与WSR进行时延抖动与分组丢失率的对比分析。实验证明WSR与OLSR相比,两种场景下最大时延抖动分别降低46 ms与126 ms,分组丢失率分别降低30%和21%,并且能够解决拓扑快照切换导致分组传输路径中断的问题。