For a monoid M, this paper introduces the weak M- Armendariz rings which are a common generalization of the M- Armendariz rings and the weak Armendariz rings, and investigates their properties. Moreover, this paper pr...For a monoid M, this paper introduces the weak M- Armendariz rings which are a common generalization of the M- Armendariz rings and the weak Armendariz rings, and investigates their properties. Moreover, this paper proves that: a ring R is weak M-Armendariz if and only if for any n, the n-by-n upper triangular matrix ring Tn (R) over R is weak M- Armendariz; if I is a semicommutative ideal of ring R such that R/I is weak M-Armendariz, then R is weak M-Armendariz, where M is a strictly totally ordered monoid; if a ring R is semicommutative and M-Armendariz, then R is weak M × N- Armendariz, where N is a strictly totally ordered monoid; a finitely generated Abelian group G is torsion-free if and only if there exists a ring R such that R is weak G-Armendariz.展开更多
引入拟正则Armendariz环并研究其性质。证明弱Armendariz环是拟正则Armendariz环,直积∏i∈I R i是拟正则Armendariz环当且仅当每个环R i(i∈I)是拟正则Armendariz环,同时证明R是拟正则Armendariz环当且仅当上三角矩阵环T n(R)(n≥2)是...引入拟正则Armendariz环并研究其性质。证明弱Armendariz环是拟正则Armendariz环,直积∏i∈I R i是拟正则Armendariz环当且仅当每个环R i(i∈I)是拟正则Armendariz环,同时证明R是拟正则Armendariz环当且仅当上三角矩阵环T n(R)(n≥2)是拟正则Armendariz环,并通过例子说明任意环R上的全矩阵环M n(R)(n≥2)不是拟正则Armendariz环。展开更多
引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR...引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR_α是幂级数J-Armendariz环当且仅当每一个环R_α都是幂级数J-Armendariz环;(3)如果环R是幂级数J-Armendariz环,满足J(R)[x]=J(R[x]),则R[x]是幂级数J-Armendariz环。展开更多
基金The National Natural Science Foundation of China (No.10571026)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20060286006)
文摘For a monoid M, this paper introduces the weak M- Armendariz rings which are a common generalization of the M- Armendariz rings and the weak Armendariz rings, and investigates their properties. Moreover, this paper proves that: a ring R is weak M-Armendariz if and only if for any n, the n-by-n upper triangular matrix ring Tn (R) over R is weak M- Armendariz; if I is a semicommutative ideal of ring R such that R/I is weak M-Armendariz, then R is weak M-Armendariz, where M is a strictly totally ordered monoid; if a ring R is semicommutative and M-Armendariz, then R is weak M × N- Armendariz, where N is a strictly totally ordered monoid; a finitely generated Abelian group G is torsion-free if and only if there exists a ring R such that R is weak G-Armendariz.
文摘引入幂级数J-Armendariz环的概念,进一步扩展幂级数Armendariz环的研究。证明了:(1)设T=(R 0 M S)是一个形式三角矩阵环,则T是幂级数J-Armendariz环当且仅当R和S都是是幂级数J-Armendariz环;(2)设{R_αα∈Λ}是一族环,则直积∏α∈ΛR_α是幂级数J-Armendariz环当且仅当每一个环R_α都是幂级数J-Armendariz环;(3)如果环R是幂级数J-Armendariz环,满足J(R)[x]=J(R[x]),则R[x]是幂级数J-Armendariz环。