The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in...The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.展开更多
In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the ...In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the kernel Ω in Llog~+ L(S^(n-1)). Here μ_(Ω,)^(*,)~ρ_λand μ_Ω~ρ,S are parametricMarcinkiewicz functions corresponding to the Littlewood-Paley g_λ~*-function and the Lusin areafunction S, respectively. Under certain weak regularity condition on Ω, the authors prove thatif f belongs to BMO(Rn) or to a certain Campanato space, then [μ_(Ω,)^(*,)~ρ_λ(f)]~2, [μ_Ω~ρ,_S(f)]~2 and[μ_Ω~ρ(f)]~2 are either infinite everywhere or finite almost everywhere, and in the latter case, somekind of boundedness are also established.展开更多
In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(...In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.展开更多
Abstract. The authors introduce the (θ1,θ2)-type Calderon-Zygmund operators andthe operators with the semi-(θ, N) regular kernels, and study their boundedness on theweighted Lebesgue spacest the weighted weak Lebes...Abstract. The authors introduce the (θ1,θ2)-type Calderon-Zygmund operators andthe operators with the semi-(θ, N) regular kernels, and study their boundedness on theweighted Lebesgue spacest the weighted weak Lebesgue spaces, the weighted Hardy spacesand the weighted weak Hardy spaces.展开更多
In present work studied the new boundary value problem for semi linear(Power-type nonlinearities)system equations of mixed hyperbolic-elliptic Keldysh type in the multivariate dimension with the changing time directio...In present work studied the new boundary value problem for semi linear(Power-type nonlinearities)system equations of mixed hyperbolic-elliptic Keldysh type in the multivariate dimension with the changing time direction.Considered problem and equation belongs to the modern level partial differential equations.Applying methods of functional analysis,topological methods,“ε”-regularizing.and continuation by the parameter at the same time with aid of a prior estimates,under assumptions conditions on coefficients of equations of system,the existence and uniqueness of generalized and regular solutions of a boundary problem are established in a weighted Sobolev's space.In this work one of main idea consists of show that the new boundary value problem which investigated in case of linear system equations can be well-posed when added nonlinear terms to this linear system equations,moreover in this case constructed new weithged spaces,the identity between of strong and weak solutions is established.展开更多
文摘The existence of common fixed points for a pair of Lipschitzian mappings in Banach spaces is proved. By using this result, some common fixed point theorems are also established for these mappings in Hilbert spaces, in L p spaces, in Hardy spaces H p, and in Sobolev spaces H r,p , for 1<p<+∞ and r≥0.
基金Project 10671062 supported by NSF of ChinaProject 20094306110004 supported by RFDP of high education of China
文摘In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the kernel Ω in Llog~+ L(S^(n-1)). Here μ_(Ω,)^(*,)~ρ_λand μ_Ω~ρ,S are parametricMarcinkiewicz functions corresponding to the Littlewood-Paley g_λ~*-function and the Lusin areafunction S, respectively. Under certain weak regularity condition on Ω, the authors prove thatif f belongs to BMO(Rn) or to a certain Campanato space, then [μ_(Ω,)^(*,)~ρ_λ(f)]~2, [μ_Ω~ρ,_S(f)]~2 and[μ_Ω~ρ(f)]~2 are either infinite everywhere or finite almost everywhere, and in the latter case, somekind of boundedness are also established.
基金supported by National Natural Science Foundation of China(10371021)
文摘In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.
文摘Abstract. The authors introduce the (θ1,θ2)-type Calderon-Zygmund operators andthe operators with the semi-(θ, N) regular kernels, and study their boundedness on theweighted Lebesgue spacest the weighted weak Lebesgue spaces, the weighted Hardy spacesand the weighted weak Hardy spaces.
文摘In present work studied the new boundary value problem for semi linear(Power-type nonlinearities)system equations of mixed hyperbolic-elliptic Keldysh type in the multivariate dimension with the changing time direction.Considered problem and equation belongs to the modern level partial differential equations.Applying methods of functional analysis,topological methods,“ε”-regularizing.and continuation by the parameter at the same time with aid of a prior estimates,under assumptions conditions on coefficients of equations of system,the existence and uniqueness of generalized and regular solutions of a boundary problem are established in a weighted Sobolev's space.In this work one of main idea consists of show that the new boundary value problem which investigated in case of linear system equations can be well-posed when added nonlinear terms to this linear system equations,moreover in this case constructed new weithged spaces,the identity between of strong and weak solutions is established.