期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Kinetic Spectrophotometric Method for the Determination of Iron (Ⅲ) in Water Samples 被引量:7
1
作者 JI Hongwei XU Jian XIN Huizhen YANG Xiaoman 《Journal of Ocean University of China》 SCIE CAS 2008年第2期161-165,共5页
A new kinetic spectrophotometric method has been developed for the determination of iron (Ⅲ). The method is based on the catalytic effect of iron (Ⅲ) on the oxidation of weak acid brilliant blue dye (RAWL) by ... A new kinetic spectrophotometric method has been developed for the determination of iron (Ⅲ). The method is based on the catalytic effect of iron (Ⅲ) on the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 in acid medium. The advantages of the proposed method are that it is sensitive, accurate, rapid, inexpensive, can be operated under room temperature and has a large determination concentration range compared to other techniques. The obtained optimum conditions are: pH 3.15, RAWL (200 mgL^-1) 5.00mL, Potassium periodate solution (0.01 molL^-1) 0.30mL, phenanthroline (0.02 molL^-1) 1.00mL, reaction temperature 25℃ and reaction time 7 min. With this method iron could quantitively be determined in the range 0.00-0.02 mgL^-1, the detection limit being 4.10 × 10^10gmL^-1. The relative standard deviations (RSD) in five replicate determinations for 3 μgL^-1and 5 μgL^-1 iron (Ⅲ) are 3.1% and 1.9%, respectively. The method has been applied to the determination of iron (Ⅲ) in tap water samples and seawater samples (from the South China Sea), the recovery rates being 98.0% and 100.5%, respectively. 展开更多
关键词 IRON kinetic spectrophotometry catalytic effect weak acid brilliant blue dye (RAWL)
下载PDF
Determination of Trace Copper (Ⅱ) in Water Samples by Kinetic-spectrophotometry 被引量:3
2
作者 QI Yanxia JI Hongwei XIN Huizhen LIU Li 《Journal of Ocean University of China》 SCIE CAS 2007年第2期143-146,共4页
A new kinetic-spectrophotometric method is proposed for the determination of copper (Ⅱ). The method is based on the catalytic effect of copper (Ⅱ) on the oxidation of weak acid brilliant blue dye (RAWL) by hydrogen ... A new kinetic-spectrophotometric method is proposed for the determination of copper (Ⅱ). The method is based on the catalytic effect of copper (Ⅱ) on the oxidation of weak acid brilliant blue dye (RAWL) by hydrogen peroxide. The copper (Ⅱ) can be determined spectrophotometrically by measuring the decrease of absorbance of RAWL at λ = 626 nm using the fix-time method. The optimum reaction conditions are as follows: pH 7.20, buffer solution NaOH-KH2PO4, RAWL (200 mg L-1) 5.00 mL, H2O2 (30%) 0.50 mL, reaction temperature 80℃ and reaction time 20 min. The linear range of this method is between 0 μg L-1 and 12 μg L-1 and the limit of detection is 0.011 μg L-1, the relative standard deviation (RSD) in five replicate determinations for 2 and 8 μg L-1 copper (Ⅱ) are 3.2% and 2.3%, respectively. Twenty ions do not interfere in the determination of copper (Ⅱ). The method has been applied satisfactorily to the determination of copper (Ⅱ) in freshwater samples (tap water and Yellow River water from Lijin, Shandong, China) and seawater samples (from the South China Sea), the recovery rates are 98.0%, 102.5% and 96.0%, respectively. 展开更多
关键词 COPPER kinetic-spectrophotometry catalytic effect weak acid brilliant blue dye (RAWL)
下载PDF
Measurement of Trace Manganese(Ⅱ) by the Catalytic Kinetic Spectrophotometric Method 被引量:2
3
作者 JI Hongwei SHA Yuanyuan XIN Huizhen QI Yanxia 《Journal of Ocean University of China》 SCIE CAS 2009年第2期127-132,共6页
A new kinetic spectrophotometric method is developed for the measurement of manganese(Ⅱ) in water. The method is based on the catalytic effect of manganese(Ⅱ) with the oxidation of weak acid brilliant blue dye(RAWL)... A new kinetic spectrophotometric method is developed for the measurement of manganese(Ⅱ) in water. The method is based on the catalytic effect of manganese(Ⅱ) with the oxidation of weak acid brilliant blue dye(RAWL) by KIO4 using the Nitrilo triacetic acid(NTA) as an activation reagent. The optimum conditions obtained are 40 mgL-1 RAWL,1×10-4molL-1 KIO4,2×10-4 molL-1 Nitrilo triacetic acid(NTA),pH = 5.8,the reaction time of 3.00 min and the temperature of 20.0 ℃. Under the optimum conditions,the proposed method allows the measurement of manganese(Ⅱ) in a range of 0-50.0 ng mL-1 and with a detection limit of down to 0.158 ng mL-1. The recovery efficiency in measuring the standard manganese(Ⅱ) solution is in a range of 98.5%-102%,and the RSD is in a range of 0.76%-1.25%. The new method has been successfully applied to the measurement of manganese(Ⅱ) in both fresh water and seawater samples with satisfying results. Moreover,few cations and anions interfere with the measurement of manganese(Ⅱ). Compared with other kinetic catalytic methods and instrumental methods,the proposed method shows fairly good selectivity and sensitivity,low cost,cheapness,low detection limit and rapidity. It can be applied on boats easily. 展开更多
关键词 MANGANESE kinetic-spectrophotometry catalytic effect weak acid brilliant blue dye (RAWL) seawater potassium periodate
下载PDF
Study on the Determination of Trace Ni(II) by the Catalytic Kinetic Spectrophotometric Method
4
作者 JI Hongwei CAO Hengxia XIN Huizhen LI Shuang 《Journal of Ocean University of China》 SCIE CAS 2010年第1期25-30,共6页
A new kinetic spectrophotometric method has been developed for the determination of trace Ni (Ⅱ in natural water. The method is based on the catalytic effect of Ni (Ⅱ) on the oxidation of weak acid brilliant blue... A new kinetic spectrophotometric method has been developed for the determination of trace Ni (Ⅱ in natural water. The method is based on the catalytic effect of Ni (Ⅱ) on the oxidation of weak acid brilliant blue dye (RAWL) by KIO4 in acid medium. The concentration of nickel (Ⅱ) can be determined spectrophotometrically by measuring the decrease of absorbance of RAWL at λ = 626 nm using the fix-time method. The influencing factors are investigated by the orthogonal experimental design. The obtained optimum analytical conditions are: pH = 2.00, CRAWL = 5.00×10^-5 mol·L^-1, c KlO4 = 2.00× 10^-5 mol·L^-1, the reaction time t= 10min and the temperature T = 25 ℃. Under the optimum conditions, the developed method allows the measurement of Ni (Ⅱ) in a range of 0 - 40.0ngmL1. The standard deviation of eleven independent measurements of blank reaction is S = 3.08× 10^-3 and the limit of detection is 2.20ng·mL^-1. The relative standard deviations (RSDs) in six replicate determinations of 5 ngmL-1 and 8 ngmL1 Ni (Ⅱ) are 2.87% and 1.11%, respectively. Moreover, the experiments show few cations and anions can interfere with the measurement of Ni (Ⅱ). The recovery efficiencies of this method are in a range of 97.0%-102.5% in freshwater samples. But there is a decreasing effect, which is about 0.2 times the added Ni (Ⅱ) in seawater medium. After reasonable calibration this processing method is used for the determination of Ni (Ⅱ) in seawater samples successfully. The results show this developed method has high accuracy and precision, high sensitivity, large range of linearity and high speed. The method can, therefore, be employed at room temperature. 展开更多
关键词 Ni(Ⅱ) kinetic-spectrophotometry catalytic effect weak acid brilliant blue dye (RAWL) potassium periodate decreasing effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部