期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
1
作者 陈润泽 曹安妮 +3 位作者 王馨苒 柳洋 杨洪新 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期487-491,共5页
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in... Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection. 展开更多
关键词 Dzyaloshinskii-Moriya interaction weak electric field control effect Rashba spin-orbit coupling interfacial orbital hybridization
下载PDF
Action potential-simulated weak electric fields can directly initiate myelination
2
作者 Lei Liu Shifu Zhao Haiming Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第12期1328-1331,共4页
BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fie... BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system. DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA. MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used. METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1 2)× 10^5/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10^-2, 1×10^-3, 1×10^-4, and 1×10^-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once a day for 10 consecutive days to simulate weak negative electric fields during action potential conduction. MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry. RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1 × 10^-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1 × 10^-4 and 1 × 10^-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells. CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10^-4-10^-3) seconds, 40 mV can directly initiate and participate in myelination in the central nervous system. 展开更多
关键词 myelin sheath OLIGODENDROCYTE weak electric field action potential carbon fiber
下载PDF
Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields
3
作者 秦迎梅 王江 +3 位作者 门聪 赵佳 魏熙乐 邓斌 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期604-610,共7页
Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied... Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the exterrtal stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. 展开更多
关键词 spike-timing-dependent plasticity (STDP) weak electrical field rhythmic activity
下载PDF
Weight Gain from Static Charging
4
作者 Keith W. Koenig 《Open Journal of Applied Sciences》 CAS 2023年第1期89-93,共5页
This paper announces the discovery that a statically charged object gains weight, equal to approximately 7 × 10<sup>-11</sup> grams per excess electron when the object is negatively charged and 5 ... This paper announces the discovery that a statically charged object gains weight, equal to approximately 7 × 10<sup>-11</sup> grams per excess electron when the object is negatively charged and 5 × 10<sup>-11</sup> grams per excess proton when positively charged. The weight gain is not instantaneous but increases to a maximum and then decays with the excess charge. 展开更多
关键词 weak electric fields GRAVITY Mass CHARGE Unification DISCOVERY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部