In this paper, the well-known Duffing equation and the nonlinear equation describing vibration of the human eardrum are introduced from elastic nonlinear system theory. According to the fact that the human ear can dis...In this paper, the well-known Duffing equation and the nonlinear equation describing vibration of the human eardrum are introduced from elastic nonlinear system theory. According to the fact that the human ear can distinguish weak sound with small difference, the idea that the Duffing oscillator can be used to detect a weak signal and diagnose early fault of machinery is proposed. In order to obtain a model for weak signal detection via the Duffing oscillator, the first step is to seek all forms of solutions of the Duffing equation. The second step is to study global bifurcations of the Duffing equation using qualitative analysis theory of a dynamic system. That is to say, a series of bifurcations thresholds of the Duffing equation can be analyzed by the Melnikov function and a subharmonics Melnikov function. Then the three types of bifurcations thresholds varying with damping and external exciting amplitude are discussed. The analysis concludes that the bifurcation threshold corresponding to the maximum orbit of solutions outside the homo-clinic orbit of the Duffing equation can be used to detect a weak signal. Finally, the implementing model of the Duffing oscillator for weak signal detection is given.展开更多
文摘In this paper, the well-known Duffing equation and the nonlinear equation describing vibration of the human eardrum are introduced from elastic nonlinear system theory. According to the fact that the human ear can distinguish weak sound with small difference, the idea that the Duffing oscillator can be used to detect a weak signal and diagnose early fault of machinery is proposed. In order to obtain a model for weak signal detection via the Duffing oscillator, the first step is to seek all forms of solutions of the Duffing equation. The second step is to study global bifurcations of the Duffing equation using qualitative analysis theory of a dynamic system. That is to say, a series of bifurcations thresholds of the Duffing equation can be analyzed by the Melnikov function and a subharmonics Melnikov function. Then the three types of bifurcations thresholds varying with damping and external exciting amplitude are discussed. The analysis concludes that the bifurcation threshold corresponding to the maximum orbit of solutions outside the homo-clinic orbit of the Duffing equation can be used to detect a weak signal. Finally, the implementing model of the Duffing oscillator for weak signal detection is given.