Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for per...Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for perceiving harmonic information, but they are often ineffective in perceiving weak harmonic signals because they are based on energy or amplitude analysis. Based on the theory of Normal time-frequency transform (NTFT) and complex correlation coefficient, a new type of spectrum, the Harmonicity Spectrum (HS), is developed to perceive harmonic information in time series. HS is based on the degree of signal harmony rather than energy or amplitude analysis, and can therefore perceive very weak harmonic information in signals sensitively. Simulation examples show that HS can detect harmonic information that cannot be detected by Fourier spectrum or time-frequency spectrum. Acoustic data analysis shows that HS has better resolution than traditional LOFAR spectrum.展开更多
文摘Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for perceiving harmonic information, but they are often ineffective in perceiving weak harmonic signals because they are based on energy or amplitude analysis. Based on the theory of Normal time-frequency transform (NTFT) and complex correlation coefficient, a new type of spectrum, the Harmonicity Spectrum (HS), is developed to perceive harmonic information in time series. HS is based on the degree of signal harmony rather than energy or amplitude analysis, and can therefore perceive very weak harmonic information in signals sensitively. Simulation examples show that HS can detect harmonic information that cannot be detected by Fourier spectrum or time-frequency spectrum. Acoustic data analysis shows that HS has better resolution than traditional LOFAR spectrum.