The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the correspond...The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection.展开更多
The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engin...The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.展开更多
Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat...Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.展开更多
Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short peri...Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short period of time. It is now a serious challenge to cope with ground control problems such as roof falls, face and floor failure, and excessive shield loading as fast as possible to minimize production and monetary losses. In Illinois Coal Mines, the existence of weak floor strata blow the coal seam may pose additional problems related to floor heaving, shield base punching, and associated roof and face falls. In this study, the effects of weak floor on longwall ground control are analyzed using two dimensional finite element models. A two leg 635 6 ton (700 short ton) yielding capacity shield is included in the models to evaluate the effects of different thickness and material properties of the weak floor. The study indicates that the thickness and material properties of weak floor have significant effects on shield loading, the distribution and intensity of front abutment stress, failure zones in the surrounding strata, roof to floor convergence, and floor punching by the shield base.展开更多
A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuou...A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L^(2)norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence.展开更多
In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full pol...In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full polynomial space P_(k)is to use a much smaller number of basis functions to achieve the same accuracy when k≥2.The optimal rate of convergence is derived in both H^(1)and L^(2)norms.Numerical experiments have been conducted to verify the theoretical error estimates.In addition,numerical comparisons of using the P_(2)-harmonic polynomial space and using the standard P_(2)polynomial space are presented.展开更多
A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established throu...A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.展开更多
A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulat...A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.展开更多
Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a d...Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.展开更多
For weighted sums of the form ?j = 1kn anj Xnj\sum {_{j = 1}^{k_n } } a_{nj} X_{nj} where {a nj , 1 ?j?k n ↑∞,n?1} is a real constant array and {X aj , 1≤j≤k n, n≥1} is a rowwise independent, zero mean, rando...For weighted sums of the form ?j = 1kn anj Xnj\sum {_{j = 1}^{k_n } } a_{nj} X_{nj} where {a nj , 1 ?j?k n ↑∞,n?1} is a real constant array and {X aj , 1≤j≤k n, n≥1} is a rowwise independent, zero mean, random element array in a real separable Banach space of typep, we establishL r convergence theorem and a general weak law of large numbers respectively, conversely, we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.展开更多
In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar w...In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar weak structures.The failure may occur in two modes:a sliding failure on the weak plane or an intrinsic failure of the rock mass.The rock matrix is expected to behave elastically or fail in a brittle manner,being represented by a non-associated Mohr-Coulomb behavior,while the sliding failure is represented by the evaluation of the Coulomb criterion on an explicitly defined plane.Failure may furthermore affect the hydraulic properties of the rock mass:the shearing of the weakness plane may create a transmissive fluid pathway.Verification of the mechanical submodel is conducted by comparison with an analytical solution,while the coupled hydro-mechanical behavior is validated with field data and will be applied within a model and code validation initiative.The work presented here aims at documenting the progress in code development,while accurate match of the field data with the numerical results is current work in progress.展开更多
文摘The Weak Galerkin (WG) finite element method for the unsteady Stokes equations in the primary velocity-pressure formulation is introduced in this paper. Optimal-order error estimates are established for the corresponding numerical approximation in an H1 norm for the velocity, and L2 norm for both the velocity and the pressure by use of the Stokes projection.
基金support of the National Natural Science Foundation of China(12072011).
文摘The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crackgrowth analysis of solid structures,because only boundary and crack-surface elements are needed.However,for engineering structures subjected to body forces such as rotational inertia and gravitational loads,additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.In this study,weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed.By using divergence theorem or alternatively the radial integration method,the domain integral terms caused by body forces are transformed into boundary integrals.And due to the weak singularity of the formulated boundary integral equations,a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations.Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.
基金Project(51508562)supported by the National Natural Science Foundation of ChinaProject(ZK18-03-49)supported by the Scientific Research Program of National University of Defense Technology,China
文摘Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range.
文摘Higher production, better safety standard, and potential for automation are some of the benefits of longwall mining. Today, longwall face advances at a faster rate exposing many diversified rock layers in a short period of time. It is now a serious challenge to cope with ground control problems such as roof falls, face and floor failure, and excessive shield loading as fast as possible to minimize production and monetary losses. In Illinois Coal Mines, the existence of weak floor strata blow the coal seam may pose additional problems related to floor heaving, shield base punching, and associated roof and face falls. In this study, the effects of weak floor on longwall ground control are analyzed using two dimensional finite element models. A two leg 635 6 ton (700 short ton) yielding capacity shield is included in the models to evaluate the effects of different thickness and material properties of the weak floor. The study indicates that the thickness and material properties of weak floor have significant effects on shield loading, the distribution and intensity of front abutment stress, failure zones in the surrounding strata, roof to floor convergence, and floor punching by the shield base.
基金M.Cui was supported in part by the National Natural Science Foundation of China(Grant No.11571026)the Beijing Municipal Natural Science Foundation of China(Grant No.1192003)Xiu Ye was supported in part by the National Science Foundation Grant DMS-1620016.
文摘A modified weak Galerkin(MWG)finite element method is developed for solving the biharmonic equation.This method uses the same finite element space as that of the discontinuous Galerkin method,the space of discontinuous polynomials on polytopal meshes.But its formulation is simple,symmetric,positive definite,and parameter independent,without any of six inter-element face-integral terms in the formulation of the discontinuous Galerkin method.Optimal order error estimates in a discrete H2 norm are established for the corresponding finite element solutions.Error estimates in the L^(2)norm are also derived with a sub-optimal order of convergence for the lowest-order element and an optimal order of convergence for all high-order of elements.The numerical results are presented to confirm the theory of convergence.
文摘In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and analyzed.The idea of using the P_(k)-harmonic polynomial space instead of the full polynomial space P_(k)is to use a much smaller number of basis functions to achieve the same accuracy when k≥2.The optimal rate of convergence is derived in both H^(1)and L^(2)norms.Numerical experiments have been conducted to verify the theoretical error estimates.In addition,numerical comparisons of using the P_(2)-harmonic polynomial space and using the standard P_(2)polynomial space are presented.
文摘A planar nonlinear weak form quadrature beam element of arbitrary number of axial nodes is proposed on the basis of the absolute nodal coordinate formulation (ANCF). Elastic forces of the element are established through geometrically exact beam theory, resulting in good consistency with classical beam theory. Two examples with strong geometrical nonlinearity are presented to verify the effec-tiveness of the formulation.
文摘A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM J.Numer.Anal.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element formulation.This work is a continuation of our investigation of the SFWG method for the biharmonic equation.The new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular grids.This new method also keeps the formulation that is symmetric,positive definite,and stabilizer-free.Four-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)norm.Superconvergence of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation polynomial.The postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal order.Numerical examples are tested to verify the theor ies.
基金Projects(52004143,51774194)supported by the National Natural Science Foundation of ChinaProject(2020M670781)supported by the China Postdoctoral Science Foundation+2 种基金Project(SKLGDUEK2021)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,ChinaProject(U1806208)supported by the NSFC-Shandong Joint Fund,ChinaProject(2018GSF117023)supported by the Key Research and Development Program of Shandong Province,China。
文摘Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.
基金Supported by the National Natural Science F oundation of China( No.10 0 710 5 8)
文摘For weighted sums of the form ?j = 1kn anj Xnj\sum {_{j = 1}^{k_n } } a_{nj} X_{nj} where {a nj , 1 ?j?k n ↑∞,n?1} is a real constant array and {X aj , 1≤j≤k n, n≥1} is a rowwise independent, zero mean, random element array in a real separable Banach space of typep, we establishL r convergence theorem and a general weak law of large numbers respectively, conversely, we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.
基金the DECOVALEX-2019 funding organisations of Andra,BGR/UFZ,CNSC,US DOE,ENSI,JAEA,IRSN,KAERI,NWMO,RWM,SURAO,SSM and Taipower for their financial and technical support of the work described in this paper。
文摘In this paper,an elasto-plastic constitutive model is employed to capture the shear failure that may occur in a rock mass presenting mechanical discontinuities,such as faults,fractures,bedding planes or other planar weak structures.The failure may occur in two modes:a sliding failure on the weak plane or an intrinsic failure of the rock mass.The rock matrix is expected to behave elastically or fail in a brittle manner,being represented by a non-associated Mohr-Coulomb behavior,while the sliding failure is represented by the evaluation of the Coulomb criterion on an explicitly defined plane.Failure may furthermore affect the hydraulic properties of the rock mass:the shearing of the weakness plane may create a transmissive fluid pathway.Verification of the mechanical submodel is conducted by comparison with an analytical solution,while the coupled hydro-mechanical behavior is validated with field data and will be applied within a model and code validation initiative.The work presented here aims at documenting the progress in code development,while accurate match of the field data with the numerical results is current work in progress.