For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array ...For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array in a real separable Banach space of typep,we establishL r convergence theorem and a general weak law of large numbers respectively,conversely,we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.展开更多
For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ...For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.展开更多
Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of...Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.展开更多
基金Supported by the National Natural Science F oundation of China(No.10071058)
文摘For weighted sums of the form?j=1kn anj Xnj\sum{_{j=1}^{k_(n)}}a_({nj})X_({nj})where{a_(nj),1?j?k_(n)↑∞,n?1}is a real constant array and{X_(aj),1≤j≤k n,n≥1}is a rowwise independent,zero mean,random element array in a real separable Banach space of typep,we establishL r convergence theorem and a general weak law of large numbers respectively,conversely,we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums.
基金supported by the Vietnam Institute for Advanced Study in Mathematics(VIASM)the Vietnam National Foundation for Sciences and Technology Development NAFOSTED(Grant No.101.01.2012.13)supported by NAFOSTED(Grant No.101.03.2012.17)
文摘For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.
基金Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。
文摘Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.