Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patie...This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals ...An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.展开更多
The target on the sea surface is complex and difficult to detect due to the interference of backscattered returns from the sea surface illuminated by the radar pulse. Detrended fluctuation analysis (DFA) has been us...The target on the sea surface is complex and difficult to detect due to the interference of backscattered returns from the sea surface illuminated by the radar pulse. Detrended fluctuation analysis (DFA) has been used successfully to extract the time-domain Hurst exponent of sea-clutter series. Since the frequency of the sea clutter mainly concentrates around Doppler center so that we consider to extract frequency-do- main fractal characterization and then detect a weak target within sea clutter by using the difference of frequency-domain fractal characterization. The generalized detrended fluctuation analysis (GDFA) is more flexible than traditional DFA owing to its smoothing action for the clutters. In this paper, we apply the GDFA to evaluate the generalized Hurst exponent of sea-clutter series in the frequency domain. The difference of generalized Hurst exponents between different sea-clutter range bins would be used to determine whether the target exists. Moreover, some simulations with the real IPIX radar data have also been demonstrated in order to suooort this conclusion.展开更多
Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-sta...Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.展开更多
This paper focuses on the sea-surface weak target detection based on memory-fully convolutional network(M-FCN)in strong sea clutter.Firstly,the constant false alarm rate(CFAR)detection method utilizes a low threshold ...This paper focuses on the sea-surface weak target detection based on memory-fully convolutional network(M-FCN)in strong sea clutter.Firstly,the constant false alarm rate(CFAR)detection method utilizes a low threshold with high probability of false alarm to detect sea-surface weak targets after non-coherent integration.Reducing the detection threshold can generate a large number of false alarms while increasing the detection rate,and how to suppress a large number of false alarms is the key to improve the performance of weak target detection.Then,the detection result of the low threshold is operated to construct the target matrix suitable for the size of fully convolutional networks and the convolution operator form.Finally,the M-FCN architecture is designed to learn the different accumulation characteristics of the target and the sea clutter between different frames.For improving the detection performance,the historical multi-frame information is memorized by the network,and the end-to-end structure is established to detect sea-surface weak target automatically.Experimental results on measured data demonstrate that the M-FCN method outperforms the traditional track before detection(TBD)method and reduces false alarm tracks by 35.1%,which greatly improves the track quality.展开更多
The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function ...Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B.展开更多
In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability...In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.展开更多
We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the p...We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.展开更多
Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) o...Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) of eigenvalues of the Wigner matrix is deduced. A numerical Kullback-Leibler divergence of the empiric-d spectral CDF based on test samples from the deduced asymptotic CDF is established, which is treated as the test statistic. For validating the superiority of our proposed normality test, we apply the method to weak SIPSK signal detection in the single-input single-output (SISO) system and the single-input multiple-output (SIMO) system. By comparing with other common normality tests and the existing signal detection methods, simulation results show that the proposed method is superior and robust.展开更多
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi...Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.展开更多
The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic...The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic signals in strong noise is Imilt. According to the parametric equivalent relationship obtained using averaging method and rmtmmlization method, the critical values of detection parameters are determined, which lead to a sudden change of system dynamical behavior from periodic orbit to stable equilibritma point. Sinmlation results show that weak periodic signals in strong noise can be detected acomately with the proposed system. The method can obtain aoawate rane of parameter threshold through tlxxtetical analysis, and the detection criterion is rather simple, which is more convenieat for automatic detection.展开更多
The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscilla...The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.展开更多
In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have establishe...In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.展开更多
In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs ...In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs to distinguish faces and non-faces. Moreover, to get more accurate results of the face detection, we present a kernel function and a linear combination to build incrementally the strong classifiers based on the weak classifiers. Through comparing and analyzing results of some experiments on the synthetic data and the natural data, we can get more satisfied results by the strong classifiers than by the weak classifies. Key words weak classifier - boosting algorithm - face detection - compressed domain CLC number TP 391. 41 Foundation item: Supported by the National 863 Program (2002 AA11101) and Open Fund of State Technology Center of Multimedia Software Engineering (621-273128)Biography: CHEN Lei(1978-), male, Master, research direction: image process, image recognition and AI.展开更多
A new low noise interface circuit for detecting weak current of micro-sensors is designed.By using the transimpedance amplifier to substitute the charge amplifier,the closed-loop circuit can avoid the phase error of t...A new low noise interface circuit for detecting weak current of micro-sensors is designed.By using the transimpedance amplifier to substitute the charge amplifier,the closed-loop circuit can avoid the phase error of the charge amplifier.Therefore,the phase compensation devices will be cancelled,because there is no phase transformation through the transimpedance amplifier.As well as,by using CCCII devices to implement the high value feedback resistor of the impedance amplifier,the noise of the I-V transformation devices is reduced,comparing with the passive resistor.The floating resistor is easy to be integrated into chips,making the integration of the interface circuit of the intelligent sensors increase.Through the simulation,the phase error of the charge amplifier is almost 9°at 2 kHz and it changes with the working frequency of the micro-sensors making the phase compensation not easy.The value of the floating resistor is 250 kΩ where the bias current is 50 μA.The noise of the active resistor is 0.037 fV2/Hz,comparing with the noise of the passive resistor,which is 4.14 fV2/Hz.展开更多
Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is ...Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is submerged in the noise, so it is impossible to measure the concentration of gas with spectrum absorption directly. According to the principle and parameters of difference absorption system of CH4 gas, a detection circuit consisted of the lock-in amplifier is designed. The experiment results indicated that the detection circuit can satisfy the demand of the whole system, and the limit concentration is 150×10^-6.展开更多
Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the we...Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.展开更多
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
文摘This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
文摘An effective method of multiple input multiple output (MIMO) radar weak target detection is proposed based on the Hough transform. The detection time duration is divided into multiple coherent processing intervals (CPIs). Within each CPI, conventional methods such as fast Fourier transform (FFT) is exploit to coherent inte- grating in same range cell. Furthermore, noncoherent integration through several range cells can be implemented by Hough transform among all CPIs. Thus, higher integration gain can be obtained. Simulation results are also given to demonstrate that the detection performance of weak moving target can be dramatically improved.
基金The National Natural Science Foundation of China Project under contract Nos 41276187 and 41076119the Scientific Research Foundation for Introducing Talents,Nanjing University of Information Science and Technology under contract No.20110310Jiangsu Natural Science Foundation under contract No.BK2011008
文摘The target on the sea surface is complex and difficult to detect due to the interference of backscattered returns from the sea surface illuminated by the radar pulse. Detrended fluctuation analysis (DFA) has been used successfully to extract the time-domain Hurst exponent of sea-clutter series. Since the frequency of the sea clutter mainly concentrates around Doppler center so that we consider to extract frequency-do- main fractal characterization and then detect a weak target within sea clutter by using the difference of frequency-domain fractal characterization. The generalized detrended fluctuation analysis (GDFA) is more flexible than traditional DFA owing to its smoothing action for the clutters. In this paper, we apply the GDFA to evaluate the generalized Hurst exponent of sea-clutter series in the frequency domain. The difference of generalized Hurst exponents between different sea-clutter range bins would be used to determine whether the target exists. Moreover, some simulations with the real IPIX radar data have also been demonstrated in order to suooort this conclusion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071025 and 61502538)
文摘Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.
基金This was work supported by the National Natural Science Foundation of China(U19B2031).
文摘This paper focuses on the sea-surface weak target detection based on memory-fully convolutional network(M-FCN)in strong sea clutter.Firstly,the constant false alarm rate(CFAR)detection method utilizes a low threshold with high probability of false alarm to detect sea-surface weak targets after non-coherent integration.Reducing the detection threshold can generate a large number of false alarms while increasing the detection rate,and how to suppress a large number of false alarms is the key to improve the performance of weak target detection.Then,the detection result of the low threshold is operated to construct the target matrix suitable for the size of fully convolutional networks and the convolution operator form.Finally,the M-FCN architecture is designed to learn the different accumulation characteristics of the target and the sea clutter between different frames.For improving the detection performance,the historical multi-frame information is memorized by the network,and the end-to-end structure is established to detect sea-surface weak target automatically.Experimental results on measured data demonstrate that the M-FCN method outperforms the traditional track before detection(TBD)method and reduces false alarm tracks by 35.1%,which greatly improves the track quality.
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
基金Supported by China Postdoctoral Science Foundation No.20080441183
文摘Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B.
基金supported by the National Natural Science Foundation of China ( Grant No. 61072133)the Production,Learning and Research Joint Innovation Program of Jiangsu Province, China ( Grant Nos. BY2013007-02, SBY201120033)+2 种基金the Major Project Plan for Natural science Research in Colleges and Universities of Jiangsu Province, China( Grant No. 15KJA460008)the Open Topic of Atmospheric Sounding Key Open Laboratory of China Meteorological Administration ( Grant No. KLAS201407)the advantage discipline platform " Information and Communication Engineering" of Jiangsu Province,China
文摘In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501525)the National Natural Science Foundation of Hunan Province of China(Grant No.2018JJ3680)。
文摘We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.
基金Supported by the National Natural Science Foundation of China under Grant No 61371170the Fundamental Research Funds for the Central Universities under Grant Nos NP2015404 and NS2016038+1 种基金the Aeronautical Science Foundation of China under Grant No 20152052028the Funding of Jiangsu Innovation Program for Graduate Education under Grant No KYLX15_0282
文摘Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) of eigenvalues of the Wigner matrix is deduced. A numerical Kullback-Leibler divergence of the empiric-d spectral CDF based on test samples from the deduced asymptotic CDF is established, which is treated as the test statistic. For validating the superiority of our proposed normality test, we apply the method to weak SIPSK signal detection in the single-input single-output (SISO) system and the single-input multiple-output (SIMO) system. By comparing with other common normality tests and the existing signal detection methods, simulation results show that the proposed method is superior and robust.
基金supports from National Science Foundation of China(Grant No.51777121).
文摘Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.
文摘The evolution of chaotic state of Iarenz system on the fa- miliar parameter space cabit is analyzed. Based on the principle of chaos suppression with ntmrestmaat parametric drive, the trodel of detecting weak periodic signals in strong noise is Imilt. According to the parametric equivalent relationship obtained using averaging method and rmtmmlization method, the critical values of detection parameters are determined, which lead to a sudden change of system dynamical behavior from periodic orbit to stable equilibritma point. Sinmlation results show that weak periodic signals in strong noise can be detected acomately with the proposed system. The method can obtain aoawate rane of parameter threshold through tlxxtetical analysis, and the detection criterion is rather simple, which is more convenieat for automatic detection.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40374045 and 40574051), and by the Jilin Technology Development Plan (Grant No 20050526),
文摘The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.
文摘In the infrared spectrum absorbed type gas concentration sensor,voltage signal obtained from the two-channel thermopile infrared detector TPS2534 is very weak.In order to solve this problem,the authors have established the structure of the sensor and designed weak signal detecting circuit of the sensor based on infrared spectrum absorption principle,differential de-noising principle and weak signal detecting principle.The authors have made experiments using CH4 gas.The results show that the circuit can remove noise effectively and detect weak electrical signal obtained from the detector.
文摘In this paper, we present a strategy to implement multi-pose face detection in compressed domain. The strategy extracts firstly feature vectors from DCT domain, and then uses a boosting algorithm to build classificrs to distinguish faces and non-faces. Moreover, to get more accurate results of the face detection, we present a kernel function and a linear combination to build incrementally the strong classifiers based on the weak classifiers. Through comparing and analyzing results of some experiments on the synthetic data and the natural data, we can get more satisfied results by the strong classifiers than by the weak classifies. Key words weak classifier - boosting algorithm - face detection - compressed domain CLC number TP 391. 41 Foundation item: Supported by the National 863 Program (2002 AA11101) and Open Fund of State Technology Center of Multimedia Software Engineering (621-273128)Biography: CHEN Lei(1978-), male, Master, research direction: image process, image recognition and AI.
基金Sponsored by the National High Technology Research Development Plan of China(Grant No.2008AA042201)
文摘A new low noise interface circuit for detecting weak current of micro-sensors is designed.By using the transimpedance amplifier to substitute the charge amplifier,the closed-loop circuit can avoid the phase error of the charge amplifier.Therefore,the phase compensation devices will be cancelled,because there is no phase transformation through the transimpedance amplifier.As well as,by using CCCII devices to implement the high value feedback resistor of the impedance amplifier,the noise of the I-V transformation devices is reduced,comparing with the passive resistor.The floating resistor is easy to be integrated into chips,making the integration of the interface circuit of the intelligent sensors increase.Through the simulation,the phase error of the charge amplifier is almost 9°at 2 kHz and it changes with the working frequency of the micro-sensors making the phase compensation not easy.The value of the floating resistor is 250 kΩ where the bias current is 50 μA.The noise of the active resistor is 0.037 fV2/Hz,comparing with the noise of the passive resistor,which is 4.14 fV2/Hz.
基金Doctorate Foundation of Hebei Province(03547020D) Natural Science Foundation of Heilongjiang Province(F0312)
文摘Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is submerged in the noise, so it is impossible to measure the concentration of gas with spectrum absorption directly. According to the principle and parameters of difference absorption system of CH4 gas, a detection circuit consisted of the lock-in amplifier is designed. The experiment results indicated that the detection circuit can satisfy the demand of the whole system, and the limit concentration is 150×10^-6.
文摘Signals from infrared detector are very weak in SO2 concentration measuring system.In order to improve the sensitivity of detection,combining with filter correlation technology and infrared absorption principle,the weak signal processing circuit is designed according to correlation detection technology.Under laboratory conditions,system performance of SO2 concentration is tested,and the experimental data are analyzed and processed.Then relationship of SO2 concentration and the measuring voltage is provided to prove that the design improves measuring sensitivity of the system.