In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynami...In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.展开更多
The process of evaluating rock mass strength requires that major structural features such as joints that influence rock strength are considered. In carbonate rock masses, however, the strength of the rock mass is larg...The process of evaluating rock mass strength requires that major structural features such as joints that influence rock strength are considered. In carbonate rock masses, however, the strength of the rock mass is largely dependent on intact rock strength and structural features play a secondary role. Laboratory experiments on porous rock have shown that intact rock strength reduces with increasing porosity, which has a direct effect on the rock mass strength. Rock porosity has however not been well accounted for in rock mass characterization methods currently in use. This research applies the modified GSI method for carbonate rock masses which is based on a combination of GSI and total porosity. The main aim is to quantify the GSI with respect to rock porosity which is a direct indicator of the state of karstification, as an inherent feature that affects rock mass strength. An empirical equation is proposed whereby the GSI as observed in the field is modified by a natural log of the value of porosity, giving rise to a modified GSI (GSI<sub>m</sub>). The GSI<sub>m</sub> together with laboratory properties of rock is used to determine the properties of Vipingo coral limestone from RocLab software. A deterministic parametric slope stability analysis is done using the finite element software Phase 2 with the rock mass properties as input parameters. The analysis results point to a direct dependence of the slope stability on slope angle, slope height and rock mass strength of the lithological unit. The graphs make a useful design guide for slopes engineered in this type of rock mass.展开更多
基金financially supported by the Research and Innovation Team of Chengdu University of TechnologyProject of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2013Z002)
文摘In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation.The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.
文摘The process of evaluating rock mass strength requires that major structural features such as joints that influence rock strength are considered. In carbonate rock masses, however, the strength of the rock mass is largely dependent on intact rock strength and structural features play a secondary role. Laboratory experiments on porous rock have shown that intact rock strength reduces with increasing porosity, which has a direct effect on the rock mass strength. Rock porosity has however not been well accounted for in rock mass characterization methods currently in use. This research applies the modified GSI method for carbonate rock masses which is based on a combination of GSI and total porosity. The main aim is to quantify the GSI with respect to rock porosity which is a direct indicator of the state of karstification, as an inherent feature that affects rock mass strength. An empirical equation is proposed whereby the GSI as observed in the field is modified by a natural log of the value of porosity, giving rise to a modified GSI (GSI<sub>m</sub>). The GSI<sub>m</sub> together with laboratory properties of rock is used to determine the properties of Vipingo coral limestone from RocLab software. A deterministic parametric slope stability analysis is done using the finite element software Phase 2 with the rock mass properties as input parameters. The analysis results point to a direct dependence of the slope stability on slope angle, slope height and rock mass strength of the lithological unit. The graphs make a useful design guide for slopes engineered in this type of rock mass.