The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization...The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.展开更多
The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern...The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods. Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2 μmsize fractions in the examined soils. For the soils in which 2: 1 phyllosilicates were dominant, concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L-1 NaOH treatment. Phyllosili-cates were decreased after HGMS treatment; however, the decrease was less than that of kaorolinite. The goet bite / (goethite + hematie) values in Fe oxides of the soils kept virtually constant after HGMSt reatment.展开更多
Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zir...Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concentrate).展开更多
This paper presents the research outcomes of a magnetic mineralogical study on Hamersley iron ores. Thermal magnetic analysis shows that typical high-grade martite-microplaty hematite or M- (mpl H) and martite-micropl...This paper presents the research outcomes of a magnetic mineralogical study on Hamersley iron ores. Thermal magnetic analysis shows that typical high-grade martite-microplaty hematite or M- (mpl H) and martite-microplaty hematite-goethite or M-(mpl H)-g ores contain a small amount of original magnetite. A small amount of magnetite/maghemite and pyrite/pyrrhotite/siderite may exist in typical martite-goethite (M-G) and martite-ochreous goethite (M-oG) ores. In “the hardcap zone”, M-(H)-g ores contain a small amount of magnetite and maghemite. Compared with XRD, thermal magnetic analysis is not only more sensitive in identifying trace of magnetite contained in high-grade hematite ores, but also more diagnostic in identifying other unstable magnetic minerals like maghemite and pyrite/pyrrhotite/siderite co-existed in the ores.展开更多
The type, grain size and origin of ferrimagnetic minerals separated from red paleosols of Pleistocene Epoch (Q\-2) in eastern China, were studied by using mineral magnetic measurement, X\|ray powder diffraction and el...The type, grain size and origin of ferrimagnetic minerals separated from red paleosols of Pleistocene Epoch (Q\-2) in eastern China, were studied by using mineral magnetic measurement, X\|ray powder diffraction and electron microscopy. Results showed that the iron oxides in red paleosols were composed of hematite (α\|Fe\-2O\-3), maghemite (γ\|Fe\-2O\-3) and goethite(α\|FeOOH). Mineral magnetic parameters and X\|ray diffraction patterns indicated that maghemite was the dominant remanence carrier in red paleosols, which is characterized by superparamagnetic (SP) and stable single domain (SSD) grains. The variations of magnetic susceptibility (χ), anhysteretic magnetic susceptibility (χ\-\{ARM\}) and saturation isothermal remanent magnetization (SIRM) for red paleosols following heating to various temperatures showed two peak values at 700℃ and 900℃. The spherulitic magnetic particles measuring \{250-1000\}μm in diameter in red paleosols were separated by the magnetic separation method, indicating that these magnetic particles were an assemblage of superparamagnetic and stable single domain ferrimagnetic grains. It is suggested that the ferrimagnetic minerals of red paleosols be a pedogenic ferrimagnetic component under high temperature and high humid conditions in the Pleistocene Epoch (Q\-2). It is concluded that the magnetism characteristics of red paleosols can be used to evaluate the environmental changes of Quaternary in eastern China.展开更多
Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Eri...Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Erie(41.68°N,82.40°W).Magnetite has been identified as the dominant magnetic mineral of these sands.This study reveals a spatial variation in concentration of magnetite particles,distribution of展开更多
The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Diffe...The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Different tectonic environments,source material,and preservation background illustrate distinct properties in the geophysical observation results.展开更多
A ground magnetic survey was conducted on the Kusi mineral prospect, Papua New Guinea, to provide insights into the magnetic properties of the mineralisation and help define drill targets for an exploration programme....A ground magnetic survey was conducted on the Kusi mineral prospect, Papua New Guinea, to provide insights into the magnetic properties of the mineralisation and help define drill targets for an exploration programme. The results of the survey suggest three distinct magnetic zones: (1) a magnetic high zone covering the northern portion of the survey area; (2) a northeast-southwest trending magnetic low zone occupying the southern portion and (3) a possible buried intrusive body separating the magnetic high from the low magnetic zone. The results of the survey suggest that drilling is concentrated on the zone of low magnetic response, and the periphery of the interpreted intrusion is adjacent to the contact to the limestone defining the mineralisation style of the two zones. A further ground magnetic survey is required to determine the western limits of the low magnetic zone.展开更多
The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological...The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.展开更多
<div style="text-align:justify;"> The Gabal (G.) El-Niteishat area lies in the Central Eastern Desert of Egypt which is known for various mineral resources and geological structures. Umm Gheig, Umm Nag...<div style="text-align:justify;"> The Gabal (G.) El-Niteishat area lies in the Central Eastern Desert of Egypt which is known for various mineral resources and geological structures. Umm Gheig, Umm Naggat, Umm Shaddad, Wadi (W.) Zeidun and Sigdit represent some important regions that contain mineral deposits in the study area. Various filters such as first vertical derivative (FVD), horizontal gradient magnitude (HGM), tilt derivative (TDR) and near-surface were applied to the airborne magnetic data for the study area to deduce the structural lineaments and magnetic source edges which were controlled by the presence of mineral deposits. Processed Landsat ETM+ images are used for delineating the rock unit boundaries that are exposed in the study area such as serpentinite, metagabbro, metavolcanics and metasediments. Also, band ratios, principal component analysis (PCA) and false-color composite image (Crosta alteration image) were applied to get specific results about the alteration zones. The structural lineaments analysis illustrated that the common trends that affected the study area were NW-SE, NE-SW, E-W and N-S. Integration of remote sensing and airborne magnetic data exhibited the relation between mineralization and structural lineaments. </div>展开更多
Relatively strongly magnetic fine components (<30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S-{5-1} in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for...Relatively strongly magnetic fine components (<30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S-{5-1} in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for their morphometric characteristics and reflectance, SEM-ESD for their element contents and XRD for their mineral phases, respectively. The results showed that minerals in both samples are dominated by detrial Fe-Ti oxides of aeolian origin. In sample XS-4J the reflectance and iron contents of magnetic minerals are usually high. In addition to magnetite (Fe-3O-4), maghemite (γFe-2O-3) and hematite (Fe-2O-3), some Fe-high oxide ({72.25 wt%}-{86.67 wt%}), ilmenite (FeTiO-3), and magnetite-ulvspinel were also detected. In sample DS-4J obvious negative linear correlations were found between Ti and Fe, and the contents of Mn, Si, Al and Ca are usually high and the minerals are dominated by magnetite (maghemite), goethite (FeOOH) and limonite (containing Si and OH). In addition, the signs of corrosion of magnetic minerals and newly crystallized magnetite (maghemite) were recognized. Differences in the composition and assemblage characteristics of magnetite minerals between XS and DS reflect significant differences in source rocks and preserving conditions.展开更多
The spatial distribution patterns of surficial sediment samples from different sedimentary domains (shallow to deep-sea regions) of the eastern Arabian Sea were studied using sediment proxies viz. environmental magn...The spatial distribution patterns of surficial sediment samples from different sedimentary domains (shallow to deep-sea regions) of the eastern Arabian Sea were studied using sediment proxies viz. environmental magnetism, geochemistry, particle size and clay mineralogy. Higher concentrations of magnetic minerals (high Xlf) were recorded in the deep-water sediments when compared with the shallow water sediments. The magnetic mineralogy of one of the shallow water samples is influenced by the presence of bacterial magnetite as evidenced from the XARM/Xlf VS. XARM/Xfd biplot. However, the other samples are catchment-derived. The high correlation documented for Xlf, anhysteretic remanent mag- netisation (XARM) and isothermal remanent magnetisation (IRM) with Al indicates that the deep-sea surflcial sediments are influenced by terrigenous fluxes which have been probably derived from the southern Indian rivers, the Sindhu (the Indus) and the Narmada-Tapti rivers. A lower Mn concentration is recorded in the upper slope sediments from the oxygen minimum zone (OMZ) but a higher Mn/AI ratio is documented in the lower slope and deep-sea sediments. Clay minerals such as illite (24-48.5%), chlorite (14.1-34.9%), smectite (10.6-28.7%) and kaolinite (11.9-27.5%) dominate the sediments of shallow and deep-sea regions and may have been derived from different sources and transported by fluvial and aeolian agents. Organic carbon (OC) data indicate a low concentration in the shallow/shelf region (well oxygenated water conditions) and deeper basins (increased bottom-water oxygen concentration and low sedimentation rate). High OC concentrations were documented in the OMZ (very low bottom-water oxygen concentration with high sedimentation rate). The calcium carbonate concentration of the surface sediments from the continental shelf and slope regions (〈 1800 m) up to the Chagos-Laccadive Ridge show higher concentrations (average - 58%) when compared to deep basin sediments (average - 44%). Our study demonstrates that particle size as well as magnetic grain size, magnetic minerals and elemental variations are good indicators to distinguish terrigenous from biogenic sediments and to identify sediment provenance.展开更多
Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly ele...Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.展开更多
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un...Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.展开更多
The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore w...The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore was investigated by grindability tests.The results of the investigation show that the pulsed treatment has little effect on the particle size distribution of the magnetite ore.Significant micro-cracks or fractures are not found by SEM analysis in magnetic pulse treated sample.Magnetic separation of magnetic pulse treated and untreated magnetite ore indicates that iron recovery increases from 81.3% in the untreated sample to 87.7% in the magnetic pulse treated sample,and the corresponding iron grade increases from 42.1% to 44.4%.The results demonstrate that the magnetic pulse treatment does not significantly weaken the mineral grain boundaries or facilitate the liberation of minerals,but is beneficial to magnetic separation.展开更多
The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallo...The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.展开更多
The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the lit- erature contains numerous reports related to the magnetic separation of different mine...The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the lit- erature contains numerous reports related to the magnetic separation of different minerals, limited work concerning the application of mag- netic separation to fine chromite from the Sukinda region of India to enhance its Cr:Fe ratio has been reported. In the present investigation, magnetic separation and mineralogical characterization studies of chromite fines were conducted to enhance the Cr:Fe ratio. Characterization studies included particle size and chemical analyses, X-ray diffraction analysis, automated mineral analysis, sink-and-float studies, and mag- netic susceptibility measurements, whereas magnetic separation was investigated using a rare earth drum magnetic separator, a rare earth roll magnetic separator, an induced roll magnetic separator, and a wet high-intensity magnetic separator. The fine chromite was observed to be upgraded to a Cr:Fe ratio of 2.2 with a yield of 55.7% through the use of an induced roll magnetic separator and a feed material with a Cr:Fe ratio of 1.6.展开更多
The Nome nickel laterite deposit is located in the North East of Albania. The ore deposit, developed between ultramafic rocks and limestones during Early Cretaceous to Eocene, represents part of the Albanian Mirdita o...The Nome nickel laterite deposit is located in the North East of Albania. The ore deposit, developed between ultramafic rocks and limestones during Early Cretaceous to Eocene, represents part of the Albanian Mirdita ophiolite zone. The lateritization of the deposit was observed mainly in three separate areas, the Has-Kukes-Lure in the North, Pogradec-Librazhd in the center and Devoll in the South. The main mineralogical components of the ore are goethite, hematite and quartz, while the secondary ones are chlorite (clinochlore, Ni-chlorite), kaolinite and lizardite. Nickel is mainly found in chlorite. The ore is characterized by the presence of spheroid particles, such as oval, pisoid, peloid and composite spheroid. According to the microscopical examination the ore is characterized in general as allotriomorphic, inequigranular and the texture is oolitic-pisolitic. For the mineral processing gravimetric and magnetic separation are used in the size fractions NJ + 4 mm, dž + 1 mm, ǃ + 0.250 mm and ǂ.250 + 0.063 mm. The chemical and mineralogical analyses, as well as the microscopic examination have shown that mineral processing by magnetic separation gives the most satisfactory results for the size fractions ǃ + 0.250 mm and ǂ.250 + 0.063 mm.展开更多
The renewed interest in the reactivation of the defunct National Konongo Gold Mine located in the Ashanti Greenstone Belt, calls for a further probe into its geology and the associated mineral hosting structures to di...The renewed interest in the reactivation of the defunct National Konongo Gold Mine located in the Ashanti Greenstone Belt, calls for a further probe into its geology and the associated mineral hosting structures to discover its mineralization potential. In order to achieve this, airborne magnetic, radiometric and electromagnetic datasets were interpreted to determine the potential gold hosting features in the studied area. The results show the area to consist of the metasediment, the metavolcanic, Tartwaian Formation and their associated granitoids. Results also show that the Tarkwaian sediments, observed largely in the north-eastern side of the site;widen out substantially and truncate in the south. The analysis of the structure lineaments using a rose diagram reveals three main tectonic structures trending in N-S, NNW-SSE, and third the structure trending in the NNE-SSW to NE-SW directions in the area. The dominant structures in the area, form 90% of all the delineated structures and trend in the NE-SW and NNE-SSW direction with the remaining 10% trending in the N-S and NNW-SSE. These structures are associated with the major shear and fracture zones located mainly at the contact between the basin sediments and volcanic belt and also associated with the Tarkwaian Formation. The mapped potential gold mineralization zones located mainly at the contact between the metasediment and the metavolcanic units of the Birimian Supergroup, as well as the Tarkwaian Formation, were mapped by integrating the structures, alteration zones as well as the complex dyke systems. This paper delineates the prominent geological structures with the potential of hosting economic gold mineralization in and around the Konongo Gold Mine.展开更多
Today, it is well known that small airborne particles are very harmful to human health. For the first time in Hawaii we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Haw...Today, it is well known that small airborne particles are very harmful to human health. For the first time in Hawaii we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (PM) PM = 60, PM = 10, and PM = 2.5. In order to do a rock magnetic characterization we have performed low field susceptibility vs. temperature [k-T] experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of four different types of car engines using gasoline octane ratings of 87, 89, and 92. The Curie point determinations are very well defined and range from 292<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span>C through 393<span style="white-space:normal;"><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span></span>C and up to 660<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span>C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt tobacco ashes, as well as on automotive engine exhaust, and brake pads in question. The results of the experiments show ferro and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain [SP-MD], multidomain [MD] and pseudo-single domain [PSD] shown on the modified Day et al., diagram of <a href="#ref3">Dunlop (2002)</a>. Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria. Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles originated by localized stress in the oxidized outer shell surrounding the un-oxidized core of magnetite-like grains. All these magnetic particles have been reported to be very harmful to our human bodies (i.e. brain, lungs, heart, liver etc.).展开更多
基金supported by the National Natural Science Foundation of China(12272329)the Sichuan University Student Innovation and Entrepreneurship Training Program(S202110619066)+2 种基金the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)the Undergraduate Innovation Fund Project by Southwest University of Science and Technology(CX21-098)the NHC Key Laboratory of Nuclear Technology Medical Transformation(Mianyang Central Hospital)(21HYX019)。
文摘The influence of minor environmental factors,such as the geomagnetic field,on the biomineralization of nacres,is often ignored but a great deal of research has confirmed its important role in the normal mineralization of calcium carbonate.Although the geomagnetic field is weak,its cumulative effects need to be considered given that the biomineralization process can take years.Accordingly,the authors of this paper have investigated the effects of weak magnetic fields(25 Gs or 50 Gs)on calcium carbonate mineralization and analyzed the mechanism involved.The results show that even a weak magnetic field conduces to the formation of vaterite or aragonite,in the induction order of precursor→vaterite→aragonite.The stronger the magnetic field and the longer the time,the more obvious the induction effect.The effect of a magnetic field is strongest in the aging stage and weakest in the solution stage.Inductions by egg-white protein and by a magnetic field inhibit each other,but they both restrict particle growth.These findings highlight the importance of minor environmental factors for biomineralization and can serve as a reference for biomimetic preparation of a CaCO_(3)nacre-like structure and for anti-scale technology for circulating cooling water.
文摘The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods. Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2 μmsize fractions in the examined soils. For the soils in which 2: 1 phyllosilicates were dominant, concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L-1 NaOH treatment. Phyllosili-cates were decreased after HGMS treatment; however, the decrease was less than that of kaorolinite. The goet bite / (goethite + hematie) values in Fe oxides of the soils kept virtually constant after HGMSt reatment.
文摘Gravity, magnetic and electrostatic separation methods allowed to obtain different titanium oxide concentrates (ilmenite, leucoxene, rutile) and different varieties of zircon concentrates (premium zircon, standard zircon, medium grade zircon standard) from Senegal’s heavy mineral sands. During mining separation, monazite, which is a paramagnetic mineral, was found in a non-negligible concentration of 0.57 wt% on average in the medium grade zircon standard which also contains 37.96 wt% zircon and 44.46 wt% titanium oxides. Magnetic and gravity separation tests were carried out on the Medium grade zircon standard (MGZS) to produce a monazite concentrate at Eramet Ideas laboratory. Magnetic separation at 1.5 teslas intensity resulted in the recovery of 94.8% of the monazite from the MGZS. Gravity separation also recovered 76.6% of the monazite from the MGZS. The combination of these two treatment methods can thus produce three concentrates from MGZS (a monazite concentrate, a zircon concentrate, and a titanium oxide concentrate).
文摘This paper presents the research outcomes of a magnetic mineralogical study on Hamersley iron ores. Thermal magnetic analysis shows that typical high-grade martite-microplaty hematite or M- (mpl H) and martite-microplaty hematite-goethite or M-(mpl H)-g ores contain a small amount of original magnetite. A small amount of magnetite/maghemite and pyrite/pyrrhotite/siderite may exist in typical martite-goethite (M-G) and martite-ochreous goethite (M-oG) ores. In “the hardcap zone”, M-(H)-g ores contain a small amount of magnetite and maghemite. Compared with XRD, thermal magnetic analysis is not only more sensitive in identifying trace of magnetite contained in high-grade hematite ores, but also more diagnostic in identifying other unstable magnetic minerals like maghemite and pyrite/pyrrhotite/siderite co-existed in the ores.
文摘The type, grain size and origin of ferrimagnetic minerals separated from red paleosols of Pleistocene Epoch (Q\-2) in eastern China, were studied by using mineral magnetic measurement, X\|ray powder diffraction and electron microscopy. Results showed that the iron oxides in red paleosols were composed of hematite (α\|Fe\-2O\-3), maghemite (γ\|Fe\-2O\-3) and goethite(α\|FeOOH). Mineral magnetic parameters and X\|ray diffraction patterns indicated that maghemite was the dominant remanence carrier in red paleosols, which is characterized by superparamagnetic (SP) and stable single domain (SSD) grains. The variations of magnetic susceptibility (χ), anhysteretic magnetic susceptibility (χ\-\{ARM\}) and saturation isothermal remanent magnetization (SIRM) for red paleosols following heating to various temperatures showed two peak values at 700℃ and 900℃. The spherulitic magnetic particles measuring \{250-1000\}μm in diameter in red paleosols were separated by the magnetic separation method, indicating that these magnetic particles were an assemblage of superparamagnetic and stable single domain ferrimagnetic grains. It is suggested that the ferrimagnetic minerals of red paleosols be a pedogenic ferrimagnetic component under high temperature and high humid conditions in the Pleistocene Epoch (Q\-2). It is concluded that the magnetism characteristics of red paleosols can be used to evaluate the environmental changes of Quaternary in eastern China.
文摘Environmental magnetic research on beaches and shoreline processes is limited.Therefore,we carried out environmental magnetic studies on the heavy mineral-enriched,dark-reddish sands on Cedar Beach of western Lake Erie(41.68°N,82.40°W).Magnetite has been identified as the dominant magnetic mineral of these sands.This study reveals a spatial variation in concentration of magnetite particles,distribution of
基金granted by National Natural Science Foundation of China(Grant No.92062108)the Basic Scientific Research Funds of the Key Laboratory of Airborne Geophysics and Remote Sensing Geology,Ministry of Natural Resources(Grant No.2020YFL14)the China Geological Survey Project(Grant No.DD20190012)
文摘The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Different tectonic environments,source material,and preservation background illustrate distinct properties in the geophysical observation results.
文摘A ground magnetic survey was conducted on the Kusi mineral prospect, Papua New Guinea, to provide insights into the magnetic properties of the mineralisation and help define drill targets for an exploration programme. The results of the survey suggest three distinct magnetic zones: (1) a magnetic high zone covering the northern portion of the survey area; (2) a northeast-southwest trending magnetic low zone occupying the southern portion and (3) a possible buried intrusive body separating the magnetic high from the low magnetic zone. The results of the survey suggest that drilling is concentrated on the zone of low magnetic response, and the periphery of the interpreted intrusion is adjacent to the contact to the limestone defining the mineralisation style of the two zones. A further ground magnetic survey is required to determine the western limits of the low magnetic zone.
文摘The Magnetic method is one of the best geophysical techniques used to delineate subsurface structures. This study was conducted to investigate the basement faulting and ore mineralization into the overlying geological cover. The GEOSOFT v8.4 software was used to process the data. Upward continuation of the residual magnetic intensity map at various altitudes and the maxima of their horizontal gradient magnetic were used to highlight faults from shallow to deep, as well as, their dips and mineralization zones. The faults with the directions E-W, ESE-WNW and ENE-WSW are identified confirming the result of [1]. This study also reveals that, the layer is affected by faults propagating from the basement upwards into the cover. Our results added additional information to the knowledge of the geological structure and the mineral resources potential in the study area. Based on the 2D3/4 modeling, the Dja Fault (DF) is revealed and highlighted sub-area marked by a magnetite/or hematite dolerite, schist and sandstone blocks, which show strong magnetization. Specifically, in this area, models are made of BIF (bounded iron formation) and BIQ (bounded iron quartzite) as dominant minerals.
文摘<div style="text-align:justify;"> The Gabal (G.) El-Niteishat area lies in the Central Eastern Desert of Egypt which is known for various mineral resources and geological structures. Umm Gheig, Umm Naggat, Umm Shaddad, Wadi (W.) Zeidun and Sigdit represent some important regions that contain mineral deposits in the study area. Various filters such as first vertical derivative (FVD), horizontal gradient magnitude (HGM), tilt derivative (TDR) and near-surface were applied to the airborne magnetic data for the study area to deduce the structural lineaments and magnetic source edges which were controlled by the presence of mineral deposits. Processed Landsat ETM+ images are used for delineating the rock unit boundaries that are exposed in the study area such as serpentinite, metagabbro, metavolcanics and metasediments. Also, band ratios, principal component analysis (PCA) and false-color composite image (Crosta alteration image) were applied to get specific results about the alteration zones. The structural lineaments analysis illustrated that the common trends that affected the study area were NW-SE, NE-SW, E-W and N-S. Integration of remote sensing and airborne magnetic data exhibited the relation between mineralization and structural lineaments. </div>
文摘Relatively strongly magnetic fine components (<30μm, XS-4J and DS-4J) which are most environmentally sensitive were separated from layer S-{5-1} in the Xifeng and Duanjiapo loess sections and analyzed by MPV-3 for their morphometric characteristics and reflectance, SEM-ESD for their element contents and XRD for their mineral phases, respectively. The results showed that minerals in both samples are dominated by detrial Fe-Ti oxides of aeolian origin. In sample XS-4J the reflectance and iron contents of magnetic minerals are usually high. In addition to magnetite (Fe-3O-4), maghemite (γFe-2O-3) and hematite (Fe-2O-3), some Fe-high oxide ({72.25 wt%}-{86.67 wt%}), ilmenite (FeTiO-3), and magnetite-ulvspinel were also detected. In sample DS-4J obvious negative linear correlations were found between Ti and Fe, and the contents of Mn, Si, Al and Ca are usually high and the minerals are dominated by magnetite (maghemite), goethite (FeOOH) and limonite (containing Si and OH). In addition, the signs of corrosion of magnetic minerals and newly crystallized magnetite (maghemite) were recognized. Differences in the composition and assemblage characteristics of magnetite minerals between XS and DS reflect significant differences in source rocks and preserving conditions.
基金The magnetic instruments used for this investigation were procured through grants(DOD Sanction No.DOD/11-MRDF/1/48/P/94ODII/12-10-96)under a research project(to RS)sponsored by the erstwhile Department of Ocean Development(now Ministry of Earth Sciences),Government of India
文摘The spatial distribution patterns of surficial sediment samples from different sedimentary domains (shallow to deep-sea regions) of the eastern Arabian Sea were studied using sediment proxies viz. environmental magnetism, geochemistry, particle size and clay mineralogy. Higher concentrations of magnetic minerals (high Xlf) were recorded in the deep-water sediments when compared with the shallow water sediments. The magnetic mineralogy of one of the shallow water samples is influenced by the presence of bacterial magnetite as evidenced from the XARM/Xlf VS. XARM/Xfd biplot. However, the other samples are catchment-derived. The high correlation documented for Xlf, anhysteretic remanent mag- netisation (XARM) and isothermal remanent magnetisation (IRM) with Al indicates that the deep-sea surflcial sediments are influenced by terrigenous fluxes which have been probably derived from the southern Indian rivers, the Sindhu (the Indus) and the Narmada-Tapti rivers. A lower Mn concentration is recorded in the upper slope sediments from the oxygen minimum zone (OMZ) but a higher Mn/AI ratio is documented in the lower slope and deep-sea sediments. Clay minerals such as illite (24-48.5%), chlorite (14.1-34.9%), smectite (10.6-28.7%) and kaolinite (11.9-27.5%) dominate the sediments of shallow and deep-sea regions and may have been derived from different sources and transported by fluvial and aeolian agents. Organic carbon (OC) data indicate a low concentration in the shallow/shelf region (well oxygenated water conditions) and deeper basins (increased bottom-water oxygen concentration and low sedimentation rate). High OC concentrations were documented in the OMZ (very low bottom-water oxygen concentration with high sedimentation rate). The calcium carbonate concentration of the surface sediments from the continental shelf and slope regions (〈 1800 m) up to the Chagos-Laccadive Ridge show higher concentrations (average - 58%) when compared to deep basin sediments (average - 44%). Our study demonstrates that particle size as well as magnetic grain size, magnetic minerals and elemental variations are good indicators to distinguish terrigenous from biogenic sediments and to identify sediment provenance.
基金the National Natural Science Foundation of China (No.40371056)the Natural Science Foun-dation of Zhejiang Province, China (No.R305078).
文摘Concentrations of copper (Cu) and zinc (Zn) and various magnetic parameters in contaminated urban roadside soils were investigated using chemical analysis and magnetic measurements. The results revealed highly elevated Cu and Zn concentrations as well as magnetic susceptibility in the roadside soils. The mean concentrations of Cu and Zn in these roadside soils were almost twice those in average Chinese soils, with the mean magnetic susceptibility of the roadside soils reaching about 179 ×10^-8 m^3 kg^-1. This enhanced magnetic susceptibility was attributed to the presence of anthropogenic soft ferrimagnetic particles. A low frequency-dependent susceptibility (2.5%± 1.0%) observed in the roadside soils indicated the coarse multidomain (MD) ferrimagnetic grains to be the dominant contributor to magnetic susceptibility. The Cu and Zn concentration of the soils had highly significant linear correlations with magnetic susceptibility (P 〈 0.01), anhysteretic remanent magnetization (P 〈 0.01), and saturation isothermal remanent magnetization (P 〈 0.01). This suggested that heavy metals were associated with ferrimagnetic particles in soils, which were attributed to input of traffic emissions and industrial activities. Scanning electron microscopy and energy dispersive X-ray spectra of magnetic extracts of the roadside soils further suggested the llnk between the magnetic signal and concentrations of heavy metals. Thus, the magnetic parameters could provide a proxy measure for the level of heavy metal contamination and could be a potential tool for the detection and mapping of contaminated soils.
基金supported by the National Natural Science Foundation of China(Grant No.31570466)the National Basic Research Program of China(Grant no.2012CB416905)
文摘Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.
基金Projects(N140108001,N150106003)supported by the Fundamental Research Funds for National University of China
文摘The pulsed power is a potential means for energy saving and presents an alternative to the conventional mechanical communication for minerals.The effect of magnetic pulse treatment on grindability of a magnetite ore was investigated by grindability tests.The results of the investigation show that the pulsed treatment has little effect on the particle size distribution of the magnetite ore.Significant micro-cracks or fractures are not found by SEM analysis in magnetic pulse treated sample.Magnetic separation of magnetic pulse treated and untreated magnetite ore indicates that iron recovery increases from 81.3% in the untreated sample to 87.7% in the magnetic pulse treated sample,and the corresponding iron grade increases from 42.1% to 44.4%.The results demonstrate that the magnetic pulse treatment does not significantly weaken the mineral grain boundaries or facilitate the liberation of minerals,but is beneficial to magnetic separation.
基金jointly supported by the National Key R&D Program of China(Grant No.2016YFC0600201)China Geological Survey project(Grant Nos.DD20190012,DD20160082)the National Natural Science Foundation of China(Grant Nos.92062108,41630320,41574133)。
文摘The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.
文摘The Cr:Fe ratio (chromium-to-iron mass ratio) of chromite affects the production of chrome-based ferroalloys. Although the lit- erature contains numerous reports related to the magnetic separation of different minerals, limited work concerning the application of mag- netic separation to fine chromite from the Sukinda region of India to enhance its Cr:Fe ratio has been reported. In the present investigation, magnetic separation and mineralogical characterization studies of chromite fines were conducted to enhance the Cr:Fe ratio. Characterization studies included particle size and chemical analyses, X-ray diffraction analysis, automated mineral analysis, sink-and-float studies, and mag- netic susceptibility measurements, whereas magnetic separation was investigated using a rare earth drum magnetic separator, a rare earth roll magnetic separator, an induced roll magnetic separator, and a wet high-intensity magnetic separator. The fine chromite was observed to be upgraded to a Cr:Fe ratio of 2.2 with a yield of 55.7% through the use of an induced roll magnetic separator and a feed material with a Cr:Fe ratio of 1.6.
文摘The Nome nickel laterite deposit is located in the North East of Albania. The ore deposit, developed between ultramafic rocks and limestones during Early Cretaceous to Eocene, represents part of the Albanian Mirdita ophiolite zone. The lateritization of the deposit was observed mainly in three separate areas, the Has-Kukes-Lure in the North, Pogradec-Librazhd in the center and Devoll in the South. The main mineralogical components of the ore are goethite, hematite and quartz, while the secondary ones are chlorite (clinochlore, Ni-chlorite), kaolinite and lizardite. Nickel is mainly found in chlorite. The ore is characterized by the presence of spheroid particles, such as oval, pisoid, peloid and composite spheroid. According to the microscopical examination the ore is characterized in general as allotriomorphic, inequigranular and the texture is oolitic-pisolitic. For the mineral processing gravimetric and magnetic separation are used in the size fractions NJ + 4 mm, dž + 1 mm, ǃ + 0.250 mm and ǂ.250 + 0.063 mm. The chemical and mineralogical analyses, as well as the microscopic examination have shown that mineral processing by magnetic separation gives the most satisfactory results for the size fractions ǃ + 0.250 mm and ǂ.250 + 0.063 mm.
文摘The renewed interest in the reactivation of the defunct National Konongo Gold Mine located in the Ashanti Greenstone Belt, calls for a further probe into its geology and the associated mineral hosting structures to discover its mineralization potential. In order to achieve this, airborne magnetic, radiometric and electromagnetic datasets were interpreted to determine the potential gold hosting features in the studied area. The results show the area to consist of the metasediment, the metavolcanic, Tartwaian Formation and their associated granitoids. Results also show that the Tarkwaian sediments, observed largely in the north-eastern side of the site;widen out substantially and truncate in the south. The analysis of the structure lineaments using a rose diagram reveals three main tectonic structures trending in N-S, NNW-SSE, and third the structure trending in the NNE-SSW to NE-SW directions in the area. The dominant structures in the area, form 90% of all the delineated structures and trend in the NE-SW and NNE-SSW direction with the remaining 10% trending in the N-S and NNW-SSE. These structures are associated with the major shear and fracture zones located mainly at the contact between the basin sediments and volcanic belt and also associated with the Tarkwaian Formation. The mapped potential gold mineralization zones located mainly at the contact between the metasediment and the metavolcanic units of the Birimian Supergroup, as well as the Tarkwaian Formation, were mapped by integrating the structures, alteration zones as well as the complex dyke systems. This paper delineates the prominent geological structures with the potential of hosting economic gold mineralization in and around the Konongo Gold Mine.
文摘Today, it is well known that small airborne particles are very harmful to human health. For the first time in Hawaii we have conducted an environmental pilot study of fine magnetic particles on the island of Oahu, Hawaii, of particulate matter (PM) PM = 60, PM = 10, and PM = 2.5. In order to do a rock magnetic characterization we have performed low field susceptibility vs. temperature [k-T] experiments to determine the Curie points of small particles collected from exhaust pipes, as well as from brake pads of four different types of car engines using gasoline octane ratings of 87, 89, and 92. The Curie point determinations are very well defined and range from 292<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span>C through 393<span style="white-space:normal;"><span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span></span>C and up to 660<span style="color:#4F4F4F;font-family:" font-size:14px;white-space:normal;background-color:#ffffff;"="">°</span>C. In addition, we have conducted magnetic granulometry experiments on raw tobacco, burnt tobacco ashes, as well as on automotive engine exhaust, and brake pads in question. The results of the experiments show ferro and ferrimagnetic hysteresis loops with magnetic grain sizes ranging from superparamagnetic-multidomain [SP-MD], multidomain [MD] and pseudo-single domain [PSD] shown on the modified Day et al., diagram of <a href="#ref3">Dunlop (2002)</a>. Thus far, the results we have obtained from this pilot study are in agreement with other studies conducted from cigarette ashes from Bulgaria. Our results could be correlated to the traffic-related PM in Rome, Italy where the SP fraction mainly occurs as coating of MD particles originated by localized stress in the oxidized outer shell surrounding the un-oxidized core of magnetite-like grains. All these magnetic particles have been reported to be very harmful to our human bodies (i.e. brain, lungs, heart, liver etc.).