Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag...This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.展开更多
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The...This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.展开更多
It is the presence of weakened intercalations that makes the foundation of Gezhouba Erjiang-Sluice complex. Seepage control installation must be able not only to reduce seepapge pressure, but also to protect weakened ...It is the presence of weakened intercalations that makes the foundation of Gezhouba Erjiang-Sluice complex. Seepage control installation must be able not only to reduce seepapge pressure, but also to protect weakened intercalations from encroachment of seepage. In this paper theoretical analysis has been conducted to prove that well system is highly effective seepage control installation meeting this demand. By means of in-situ monitoring it has been verified that proposed seepage control measure relying mainly on drainage is of success. Seepage stability of weakened intercalations must be considered in employing drains to control seepage, while the seepage deformation of weakened intercalations is different from that of ordinary sand-gravel. Mechanism of seepage deformation of weakened intercalations has been expounded. Seepage wedging is a special type of seepage deformation for weakened intercalations, It is shown clearly that seepage deformation of intercalations does not mean seepage failure of the foundation. In such a foundation as that of Gezhouba sluice, the permeability is distributed randomly. So the seepage field is an unstable, stochastic field.展开更多
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金supported by the Natural Science Foundation of China under Grant No.61733004the Scientific Research Fund of the Hunan Provincial Education Department under Grand No.18A267.
文摘This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.
文摘This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.
文摘It is the presence of weakened intercalations that makes the foundation of Gezhouba Erjiang-Sluice complex. Seepage control installation must be able not only to reduce seepapge pressure, but also to protect weakened intercalations from encroachment of seepage. In this paper theoretical analysis has been conducted to prove that well system is highly effective seepage control installation meeting this demand. By means of in-situ monitoring it has been verified that proposed seepage control measure relying mainly on drainage is of success. Seepage stability of weakened intercalations must be considered in employing drains to control seepage, while the seepage deformation of weakened intercalations is different from that of ordinary sand-gravel. Mechanism of seepage deformation of weakened intercalations has been expounded. Seepage wedging is a special type of seepage deformation for weakened intercalations, It is shown clearly that seepage deformation of intercalations does not mean seepage failure of the foundation. In such a foundation as that of Gezhouba sluice, the permeability is distributed randomly. So the seepage field is an unstable, stochastic field.