The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Maf...It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the C...Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC.展开更多
It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment...It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.展开更多
Reports of shoshonitic rocks in Precambrian terrains are relatively rare.Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC)show calc-alkaline...Reports of shoshonitic rocks in Precambrian terrains are relatively rare.Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC)show calc-alkaline and shoshonitic characteristics.Relict porphyritic,sub-ophitic and poikilitic textures are noted in these rocks.Their parent magma was emplaced during the waning phase of the regional metamorphism.Geochemically,these metamafics are similar to the GroupⅢpotassic and ultrapotassic rocks of Foley et al.(1987).The magma was derived from the metasomatized subcontinental lithospheric mantle(SCLM).Subduction-related sediment melts metasomatized the SCLM.Compositionally,the SCLM is a metasomatized phlogopite-amphibole-spinel-bearing harzburgite.1%–5%batch melting of the SCLM could produce the parental magma of the mafic granulites.Pressures and temperatures of metamorphic equilibration were carried out by pseudosection modeling.Peak metamorphic assemblage(M_(1):Grt-Cpx-Pl-Qz)in garnetiferous amphibolite equilibrated at 740℃and 8.7 kbar.The Cpx-Pl corona appeared around the garnet during decompression(M_(2):655℃,6 kbar).The Hbl-Pl symplectites around garnet formed during isobaric cooling(M_(3):580℃and 5.9 kbar).The emplacement of shoshonitic magma and subsequent decompression happened at the slab break-off stage of continental collision(~990 Ma).展开更多
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1...Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.展开更多
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyr...The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyroxene thermometer of Brey and Kohler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n = 8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. ThefO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/ [Cr+Al]] and Mg# [=Mg/[Mg+Fe2~] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospberic mantle.展开更多
Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is ...Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.展开更多
The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuo...The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.展开更多
The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan, Anhui Province, can be classified as two suites: 8 hydrous suite characterized by the ubiquitous oc-currence of (Ti-) pargasite and an an...The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan, Anhui Province, can be classified as two suites: 8 hydrous suite characterized by the ubiquitous oc-currence of (Ti-) pargasite and an anhydrous suite. The mineral chemistry reveals that the an-hydrous suite and one associated phlogopite-bearing lherzolite are equilibrated under temperatureconditi0ns of 1000 - 1110℃, whereas amphibole-bearing peridotites display distinct disequilibrium features, indicating partial reequilibration from 1050 to 850℃ and locally down to 750℃.This amphibole-bearing peridotites were probably the uppermost part of the high temperatureanhydrous suite which was modally modified by fractionating H2O-rich metasomatic agent during regional upwelling. This relatively recent lithospheric uplift event foll0wed an older upliftevent recognized from pyroxene unmixing of domains in local equilibrium, as well as the dominant deformation texture in the anhydrous suite. The first thermal disturbance can be linkedwith the regional extension and widespread basaltic volcanism in Jiangsu-Anhui provinces sinceEarly Tertiary and the formation of the nearby Subei (North Jiangsu) fault-depression basinduring the Eocene, while the second event in association with the formation of amphibolesprobably indicates the continuation but diminution of upward mantle flux since Neogene in response to the change in tectonic regime for eastern China.展开更多
Teleseismic events recorded by stations located in the Adamawa Plateau have been treated using the inversion method of receiver functions. These six stations are part of a network of 32 large strip seismic stations in...Teleseismic events recorded by stations located in the Adamawa Plateau have been treated using the inversion method of receiver functions. These six stations are part of a network of 32 large strip seismic stations installed in Cameroon between 2005 and 2007. This method allowed us to investigate the lithospheric mantle in that region. The results obtained from the velocity model have been compared to some existing results in this region. These results show the existence of a thick crust having an average thickness of about 35.2 km and a corresponding S wave velocity of 3.7 km/s. For an average S wave velocity of 4.4 km/s the lithospheric mantle appears to be thin in nature and has a thickness that varies from 39 km and 49.6 km. Beyond the lower lithospheric mantle, there exists a low velocity zone, whose thickness varies between 20 km and 43.9 km. The variation of the low velocity zone leads to variation of the lower boundary of the lithospheric mantle boundary at the depths ranging from 73.8 km and 85 km.展开更多
The North China Craton(NCC) represents one of the oldest and largest cratons in the earth with a nearly complete record of Precambrian history. In the northern part of the NCC, the earliest phase of alkaline magmatism...The North China Craton(NCC) represents one of the oldest and largest cratons in the earth with a nearly complete record of Precambrian history. In the northern part of the NCC, the earliest phase of alkaline magmatism occurred in discrete pulses in the Early and Middle Devonian;whereas the next episode of alkaline magmatism took place in the early Mesozoic. The Gucheng pluton is exposed in the northern part of the NCC and forms a composite intrusion, consisting of K-feldspar–bearing clinopyroxenite, clinopyroxene–bearing syenite and alkali-feldspar syenite. Mineral phases in these lithologies include clinopyroxene(Wo43-48En19-35Fs18-38), sanidine(An0 Ab3-11Or89-97), and subordinate titanite, andradite and Na-feldspar. These rocks show homogeneous Sr but variable Nd isotopic compositions, and have relatively high zircon in-situ oxygen isotopes(δ18O=5.2–6.7). The Gucheng plutonic rocks formed through fractional crystallization and accumulation from ultrapotassic magmas, which were originated from partial melting of metasomatic vein systems in the subcontinental lithospheric mantle of the NCC. These vein networks developed as a result of the reactions of fluids derived from subducted pelitic sediments on the downgoing Palaeo-Asian ocean floor with the enriched, subcontinental lithospheric mantle peridotites. SHRIMP U-Pb zircon dating has revealed a crystallization age of 415 Ma for the timing of the emplacement of the Gucheng pluton that marks the early stages of alkaline magmatism associated with the Andean-type continental margin evolution along the northern edge of the NCC facing the Palaeo-Asian Ocean.展开更多
Paleozoic diamond- and xenolith-bearing kimberlites and Cenozoic xenolith-bearing basalts,erupted in the eastern part of the North China block (NCB), provide excellent mantle probes for the research of intra-plate pr...Paleozoic diamond- and xenolith-bearing kimberlites and Cenozoic xenolith-bearing basalts,erupted in the eastern part of the North China block (NCB), provide excellent mantle probes for the research of intra-plate processes and the Phanerozoic evolution of the subcontinental lithosphere mantle (SCLM ). In this study, the mineral inclusions in diamond and xenoliths from Mengyin (Shandong Province) and Fuxian (Liaoning Province) kimberlites were chosen for constraining the nature of the Paleozoic SCLM. while xenoliths from the Shanwang and Qixia basalt (both in Shandong Province) were chosen for constraining the nature of the Cenozoic SCLM.Shanwang lies astride the Tancheng-Lujiang (Taulu) fault zone, a major lithospheric fault in Eastern China as well as in Eastern Asia, and Qixia lies east of the rault zone. Based on the research of the petrography of mantle xenoliths, petrochemistry, major and the trace element of mantle minerals, lithospheric thermal state, combiued with tbe modern geophysical data, it is concluded that the attenuation and replacement of Paleozoic SCLM by upwelling asthenospheric materials through thermal erosion and possibly delamination resulted in the rormation of irregular-shaPed hot bodies, mainly along weak zones within the mantle- The Tanlu fault zone played an importont role in the Mesozoic-Cenozoic replacemeni or the pre-existing lithospheric mantle.展开更多
The regional iosotatic gravity anomalies in the Northwest of China (80°-95°E, 35°-45°N) and corresponding problems of mantle dynamics are discussed in detail in this paper. It is assumed that the ...The regional iosotatic gravity anomalies in the Northwest of China (80°-95°E, 35°-45°N) and corresponding problems of mantle dynamics are discussed in detail in this paper. It is assumed that the anomaly of isostatic gravity in this region is caused by the nonunifromity in density and that the boundary deformation is related to the thermal convection in the upper mantle. using the correlation equation between the mantle now and regional anomalies of isostatic gravity as a constraint, we have calculated the patterns of upper mantle convection. The result shows that the regional lithospheric tectonics is strongly correlated with the upper mantle now. The uplift o f the Tianshan and Kunlun Mountains corresponds to the upward flows in the mantle while the depression of the Tarim, Tuopn and Junggar Basins corresponds to the downward now. Meanwhile, we have also worked out a basic framework for the lithospberic dynamics of the Northwest of China. It is reasonable to infer that the ' mantle flow and the horizontal compression from the india Plate may act as the main driving forces for the lithospheric tectonics of this region.展开更多
It is a well-known fact that the long-wavelength terrestrial geoid undulations are mainly attributed to deep mantle density heterogeneities,while more detailed features in the geoid geometry are associated with the to...It is a well-known fact that the long-wavelength terrestrial geoid undulations are mainly attributed to deep mantle density heterogeneities,while more detailed features in the geoid geometry are associated with the topography and the lithospheric density structure.To enhance a gravitational signature of mantle density heterogeneities below the lithosphere,the gravitational contributions of topography and lithospheric density heterogeneities should be modelled and subsequently removed from Earth’s gravity field.The refined gravity field obtained after this numerical procedure is more suitable for a recovery of a mantle density structure(below the lithosphere).Following this idea,methods for a spherical harmonic analysis and synthesis of gravity field and lithospheric density structures are presented,and a theoretical relation between gravity field and mass density structure is formulated.Since a gravimetric recovery of inner density structure has a non-unique solution,we propose an alternative method based on a conversion of seismic velocities to mass densities.A forward modelling approach is then employed to find the mantle density configuration that generates the gravitational field that best approximates the corresponding refined gravitational field obtained from observed gravity field after subtracting the gravitational signal of the lithosphere.展开更多
Objective The North China Craton (NCC) is a large Archean craton with a long geological history, yet very few studies have been carried out on the evolution of the redox conditions of its underlying mantle. Oxidati...Objective The North China Craton (NCC) is a large Archean craton with a long geological history, yet very few studies have been carried out on the evolution of the redox conditions of its underlying mantle. Oxidation state of the mantle is critical in controlling the formation of metallic mineral deposits because metals can be readily released from the mantle to partial melt under oxidized conditions. In contrast, highly reduced and stable conditions are essential for the crystallization of diamond. The subcontinental lithospheric mantle (SCLM) beneath major cratons in the world has been stable since their formation and highly reduced in its oxidation state, but the SCLM below the NCC is different.展开更多
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42302235,41830211,42272100)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.23ptpy143)。
文摘It is well established that Cretaceous magmatism in the South China Block(SCB)is related to the Paleo-Pacific subduction.However,the starting time and the associated deep crust-mantle processes are still debatable.Mafic dike swarms carry important information on the deep earth(including mantle)geodynamics and geochemical evolution.In the Jiangnan Orogen(South China).there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not.In this study,we present detailed zircon U-Pb geochronological,wholerock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes,and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time.LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous(~145 Ma).All samples have alkaline geochemical affinities with K_(2)O+Na_(2)O=3.11-4.04 wt%,K_(2)O/Na_(2)O=0.50-0.72,and Mg^(#)=62.24-65.13.They are enriched in LILE but depleted in HFSE with higher initial^(87)Sr/^(86)Sr ratio(0.706896-0.714743)and lower ε_(Nd)(t)(-2.61 to-1.67).They have high Nb/U,Nb/La,La/Sm and Rb/Sr,and low La/Nb,La/Ta,Ce/Pb,Ba/Rb,Tb/Yb and Gd/Yb ratios.Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution.Tuanshanbei dolerite were most likely derived from low-degree(2%-5%)partial melting of a phlogopite-bearing mantle material consisted of~85% spinel peridotite and~15% garnet peridotite previously metasomatized by asthenospherederived fluids/melts with minor subduction-derived fluids/melts.Slab-rollback generally lead to the upwelling of the hot asthenosphere.The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion.The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension.It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca.145 Ma.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金financially supported by the Ministry of Sciences and Technology of China(Grant No.2022YFF0800901)the Natural Science Foundation of China(Grant Nos.92055206 and 42163007)。
文摘Cenozoic potassic-ultrapotassic igneous rocks are widespread in the southeastern Tibetan Plateau.Their petrogenesis and magmatic processes remain subject to debate in spite of numerous publications.Almost all of the Cenozoic extrusive and intrusive rocks in the Yao’an area,western Yunnan Province,SW China,are geochemically shoshonitic,collectively termed here the Yao’an Shoshonitic Complex(YSC).The YSC is located in the(south)easternmost part of the ENE-WSW-trending,~550 km-long and~250 km-wide Cenozoic magmatic zone;the latter separates the orthogonal and oblique collision belts of the India-Eurasia collision orogen.Previously published geochronological and thermochronological data revealed that the rocks of the YSC were emplaced over a short timespan of 34-32 Ma.This and our new data suggest that the primary magma of the YSC likely was formed by partial melting of ancient continental lithospheric mantle beneath the Yangtze Block.This part of the continental lithospheric mantle had likely not been modified by any oceanic subduction.Fractionation crystallization of an Mg-and Ca-bearing mineral and TiFe oxides during the magmatic evolution probably account for the variable lithologies of the YSC.
基金supported by the National Key Research and Development Project(Grant.No.2019YFA0708503)。
文摘It is generally believed that the lithospheric mantle and the mantle transition zone are important carbon reservoirs.However,the location of carbon storage in Earth's interior and the reasons for carbon enrichment remain unclear.In this study,we report CO_(2)-rich olivine-hosted melt inclusions in the mantle xenoliths of late Cenozoic basalts from the Penglai area,Hainan Province,which may shed some light on the carbon enrichment process in the lithospheric mantle.We also present a detailed petrological and geochemical investigation of the late Cenozoic basalts and mantle xenoliths from northern Hainan Island.The collected samples of late Cenozoic Hainan Island basalts belong to both alkaline and subalkaline series,showing fractionated REE patterns with high(La/Yb)_(N)values of 3.52–11.77,which are typical for OIB.Based on Al-in-olivine thermometry,the temperatures estimated for the mantle xenoliths can be divided into two groups.One group has temperatures of less than 1050℃,and the other group has temperature ranging from 1050℃to 1282℃.Clinopyroxene(La/Yb)_(N)–Ti/Eu and clinopyroxene Ca/Al–Mg^(#)diagrams indicate that the mantle peridotite experienced metasomatism from both silicate and carbonate melts.Melt inclusions in the olivine of mantle xenoliths include(1)CO_(2)bubble–rich melt inclusions;(2)multiphase melt inclusions(glass+CO_(2)bubble+daughter minerals);(3)pure glass melt inclusions.Magnesite is a daughter mineral in the olivine-hosted melt inclusions,which could be interpreted as a secondary mineral formed by the interactions of CO_(2)-rich fluids with an olivine host,due to post-entrapment effects.The glasses in olivine-hosted melt inclusions have high SiO_(2)contents(60.21–77.72 wt%).Our results suggest that a considerable amount of CO_(2)-rich melt inclusions are captured in the lithospheric mantle during metasomatism.The lithospheric mantle can therefore act as is a‘carbon trap',with much CO_(2)being absorbed by the lithospheric mantle in this way.
基金partly funded by the UGC-UPE-II given to the University of Calcutta under the Non-focus Area ProgrammeThe Research Fellowship in Sciences for meritorious students(RFSMS)of the University Grants Commission,Government of India,awarded to Susmita Das(No.F.747/2007 BSR)。
文摘Reports of shoshonitic rocks in Precambrian terrains are relatively rare.Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC)show calc-alkaline and shoshonitic characteristics.Relict porphyritic,sub-ophitic and poikilitic textures are noted in these rocks.Their parent magma was emplaced during the waning phase of the regional metamorphism.Geochemically,these metamafics are similar to the GroupⅢpotassic and ultrapotassic rocks of Foley et al.(1987).The magma was derived from the metasomatized subcontinental lithospheric mantle(SCLM).Subduction-related sediment melts metasomatized the SCLM.Compositionally,the SCLM is a metasomatized phlogopite-amphibole-spinel-bearing harzburgite.1%–5%batch melting of the SCLM could produce the parental magma of the mafic granulites.Pressures and temperatures of metamorphic equilibration were carried out by pseudosection modeling.Peak metamorphic assemblage(M_(1):Grt-Cpx-Pl-Qz)in garnetiferous amphibolite equilibrated at 740℃and 8.7 kbar.The Cpx-Pl corona appeared around the garnet during decompression(M_(2):655℃,6 kbar).The Hbl-Pl symplectites around garnet formed during isobaric cooling(M_(3):580℃and 5.9 kbar).The emplacement of shoshonitic magma and subsequent decompression happened at the slab break-off stage of continental collision(~990 Ma).
基金financially supported by the NSFC(grant no.41430207, 41602340)China Postdoctoral Science Foundation ( 2016M591246)
文摘Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.
基金supported by grants from National Natural Science Foundation of China (Nos.40873016,41173034,90814003)supportedby a grant from China Geological Survey (No.1212011121088)
文摘The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyroxene thermometer of Brey and Kohler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n = 8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. ThefO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/ [Cr+Al]] and Mg# [=Mg/[Mg+Fe2~] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospberic mantle.
基金under the Supra Institutional Project (SIP-0012)carried under INDEX (PSC0204) project,funded by Council of Scientific and Industrial Research (CSIR), New Delhi, India
文摘Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.
基金This paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan )(CUGQNL0510)the National Natural Science Foundation of China(No .40425002) .
文摘The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.
文摘The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan, Anhui Province, can be classified as two suites: 8 hydrous suite characterized by the ubiquitous oc-currence of (Ti-) pargasite and an anhydrous suite. The mineral chemistry reveals that the an-hydrous suite and one associated phlogopite-bearing lherzolite are equilibrated under temperatureconditi0ns of 1000 - 1110℃, whereas amphibole-bearing peridotites display distinct disequilibrium features, indicating partial reequilibration from 1050 to 850℃ and locally down to 750℃.This amphibole-bearing peridotites were probably the uppermost part of the high temperatureanhydrous suite which was modally modified by fractionating H2O-rich metasomatic agent during regional upwelling. This relatively recent lithospheric uplift event foll0wed an older upliftevent recognized from pyroxene unmixing of domains in local equilibrium, as well as the dominant deformation texture in the anhydrous suite. The first thermal disturbance can be linkedwith the regional extension and widespread basaltic volcanism in Jiangsu-Anhui provinces sinceEarly Tertiary and the formation of the nearby Subei (North Jiangsu) fault-depression basinduring the Eocene, while the second event in association with the formation of amphibolesprobably indicates the continuation but diminution of upward mantle flux since Neogene in response to the change in tectonic regime for eastern China.
文摘Teleseismic events recorded by stations located in the Adamawa Plateau have been treated using the inversion method of receiver functions. These six stations are part of a network of 32 large strip seismic stations installed in Cameroon between 2005 and 2007. This method allowed us to investigate the lithospheric mantle in that region. The results obtained from the velocity model have been compared to some existing results in this region. These results show the existence of a thick crust having an average thickness of about 35.2 km and a corresponding S wave velocity of 3.7 km/s. For an average S wave velocity of 4.4 km/s the lithospheric mantle appears to be thin in nature and has a thickness that varies from 39 km and 49.6 km. Beyond the lower lithospheric mantle, there exists a low velocity zone, whose thickness varies between 20 km and 43.9 km. The variation of the low velocity zone leads to variation of the lower boundary of the lithospheric mantle boundary at the depths ranging from 73.8 km and 85 km.
基金financially supported by grants from the Nature Science Foundation of China (Grant Nos. 416720634177302941302038 and 41720104009)
文摘The North China Craton(NCC) represents one of the oldest and largest cratons in the earth with a nearly complete record of Precambrian history. In the northern part of the NCC, the earliest phase of alkaline magmatism occurred in discrete pulses in the Early and Middle Devonian;whereas the next episode of alkaline magmatism took place in the early Mesozoic. The Gucheng pluton is exposed in the northern part of the NCC and forms a composite intrusion, consisting of K-feldspar–bearing clinopyroxenite, clinopyroxene–bearing syenite and alkali-feldspar syenite. Mineral phases in these lithologies include clinopyroxene(Wo43-48En19-35Fs18-38), sanidine(An0 Ab3-11Or89-97), and subordinate titanite, andradite and Na-feldspar. These rocks show homogeneous Sr but variable Nd isotopic compositions, and have relatively high zircon in-situ oxygen isotopes(δ18O=5.2–6.7). The Gucheng plutonic rocks formed through fractional crystallization and accumulation from ultrapotassic magmas, which were originated from partial melting of metasomatic vein systems in the subcontinental lithospheric mantle of the NCC. These vein networks developed as a result of the reactions of fluids derived from subducted pelitic sediments on the downgoing Palaeo-Asian ocean floor with the enriched, subcontinental lithospheric mantle peridotites. SHRIMP U-Pb zircon dating has revealed a crystallization age of 415 Ma for the timing of the emplacement of the Gucheng pluton that marks the early stages of alkaline magmatism associated with the Andean-type continental margin evolution along the northern edge of the NCC facing the Palaeo-Asian Ocean.
文摘Paleozoic diamond- and xenolith-bearing kimberlites and Cenozoic xenolith-bearing basalts,erupted in the eastern part of the North China block (NCB), provide excellent mantle probes for the research of intra-plate processes and the Phanerozoic evolution of the subcontinental lithosphere mantle (SCLM ). In this study, the mineral inclusions in diamond and xenoliths from Mengyin (Shandong Province) and Fuxian (Liaoning Province) kimberlites were chosen for constraining the nature of the Paleozoic SCLM. while xenoliths from the Shanwang and Qixia basalt (both in Shandong Province) were chosen for constraining the nature of the Cenozoic SCLM.Shanwang lies astride the Tancheng-Lujiang (Taulu) fault zone, a major lithospheric fault in Eastern China as well as in Eastern Asia, and Qixia lies east of the rault zone. Based on the research of the petrography of mantle xenoliths, petrochemistry, major and the trace element of mantle minerals, lithospheric thermal state, combiued with tbe modern geophysical data, it is concluded that the attenuation and replacement of Paleozoic SCLM by upwelling asthenospheric materials through thermal erosion and possibly delamination resulted in the rormation of irregular-shaPed hot bodies, mainly along weak zones within the mantle- The Tanlu fault zone played an importont role in the Mesozoic-Cenozoic replacemeni or the pre-existing lithospheric mantle.
文摘The regional iosotatic gravity anomalies in the Northwest of China (80°-95°E, 35°-45°N) and corresponding problems of mantle dynamics are discussed in detail in this paper. It is assumed that the anomaly of isostatic gravity in this region is caused by the nonunifromity in density and that the boundary deformation is related to the thermal convection in the upper mantle. using the correlation equation between the mantle now and regional anomalies of isostatic gravity as a constraint, we have calculated the patterns of upper mantle convection. The result shows that the regional lithospheric tectonics is strongly correlated with the upper mantle now. The uplift o f the Tianshan and Kunlun Mountains corresponds to the upward flows in the mantle while the depression of the Tarim, Tuopn and Junggar Basins corresponds to the downward now. Meanwhile, we have also worked out a basic framework for the lithospberic dynamics of the Northwest of China. It is reasonable to infer that the ' mantle flow and the horizontal compression from the india Plate may act as the main driving forces for the lithospheric tectonics of this region.
文摘It is a well-known fact that the long-wavelength terrestrial geoid undulations are mainly attributed to deep mantle density heterogeneities,while more detailed features in the geoid geometry are associated with the topography and the lithospheric density structure.To enhance a gravitational signature of mantle density heterogeneities below the lithosphere,the gravitational contributions of topography and lithospheric density heterogeneities should be modelled and subsequently removed from Earth’s gravity field.The refined gravity field obtained after this numerical procedure is more suitable for a recovery of a mantle density structure(below the lithosphere).Following this idea,methods for a spherical harmonic analysis and synthesis of gravity field and lithospheric density structures are presented,and a theoretical relation between gravity field and mass density structure is formulated.Since a gravimetric recovery of inner density structure has a non-unique solution,we propose an alternative method based on a conversion of seismic velocities to mass densities.A forward modelling approach is then employed to find the mantle density configuration that generates the gravitational field that best approximates the corresponding refined gravitational field obtained from observed gravity field after subtracting the gravitational signal of the lithosphere.
基金granted by the National Natural Science Foundation of China(grants no.41173034 and 41472051)
文摘Objective The North China Craton (NCC) is a large Archean craton with a long geological history, yet very few studies have been carried out on the evolution of the redox conditions of its underlying mantle. Oxidation state of the mantle is critical in controlling the formation of metallic mineral deposits because metals can be readily released from the mantle to partial melt under oxidized conditions. In contrast, highly reduced and stable conditions are essential for the crystallization of diamond. The subcontinental lithospheric mantle (SCLM) beneath major cratons in the world has been stable since their formation and highly reduced in its oxidation state, but the SCLM below the NCC is different.