Different chemical mechanical polishing (CMP) slurries are used to obtain single-damascene Cu-wires with different surface fluctuations as well as pre-existing surface-defects in wires with rougher surfaces. The pre...Different chemical mechanical polishing (CMP) slurries are used to obtain single-damascene Cu-wires with different surface fluctuations as well as pre-existing surface-defects in wires with rougher surfaces. The presence of such pre-existing defects strongly increases the rate of early failures to almost 100%, reduces electromigration lifetime rapidly to the level of early failures, and changes the multimodal failure distribution into monomodal. The activation energy (0. 74±0.02eV) for the failure mechanism associated with these pre-existing defects confirms a dominant surface diffusion. It shows how a weakest link approximation analysis can he applied to a single wire by dividing the wire into relevant segments and assigning different failure mechanisms to the various segments. The analysis confirms that, although surface-defects are not the fastest early failure mechanism, the ten times higher surface-defectdensity in the rougher wires is responsible for the observed high early-failure rate and unreliable performance.展开更多
Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and t...Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and the Weibull Modulus is derived, which reveals the geometrical nature of the Weibull Modulus. The influences of the size distribution and the orientation distribution of cracks as well as the irregularity of the crack propagation on the strength are all taken into account. Finally, a general expression for the statistical strength of brittle materials in complex tensile stress state is obtained.展开更多
文摘Different chemical mechanical polishing (CMP) slurries are used to obtain single-damascene Cu-wires with different surface fluctuations as well as pre-existing surface-defects in wires with rougher surfaces. The presence of such pre-existing defects strongly increases the rate of early failures to almost 100%, reduces electromigration lifetime rapidly to the level of early failures, and changes the multimodal failure distribution into monomodal. The activation energy (0. 74±0.02eV) for the failure mechanism associated with these pre-existing defects confirms a dominant surface diffusion. It shows how a weakest link approximation analysis can he applied to a single wire by dividing the wire into relevant segments and assigning different failure mechanisms to the various segments. The analysis confirms that, although surface-defects are not the fastest early failure mechanism, the ten times higher surface-defectdensity in the rougher wires is responsible for the observed high early-failure rate and unreliable performance.
文摘Based on the hypothesis of the fractal distribution of crack sizes in brittle materials and the weakest link principle, the relationship between the fractal dimension of the size-frequency distribution of cracks and the Weibull Modulus is derived, which reveals the geometrical nature of the Weibull Modulus. The influences of the size distribution and the orientation distribution of cracks as well as the irregularity of the crack propagation on the strength are all taken into account. Finally, a general expression for the statistical strength of brittle materials in complex tensile stress state is obtained.