The purpose of this paper is to characterize strongly regular rings via MERT rings and weakly one-sided ideals. Many important equivalent conditions on strongly regular rings are shown.
In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such th...In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.展开更多
基金This work was supported in part by the NNSF (10071035) of China
文摘The purpose of this paper is to characterize strongly regular rings via MERT rings and weakly one-sided ideals. Many important equivalent conditions on strongly regular rings are shown.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10871106 10901002+1 种基金 10971099)the Natural Science Foundation of Anhui Provincial Education Committee (Grant No.KJ2008A026)
文摘In this paper,we introduce a non-trivial generalization of ZI-rings-quasi ZI-rings.A ring R is called a quasi ZI-ring,if for any non-zero elements a,b ∈ R,ab = 0 implies that there exists a positive integer n such that an = 0 and anRbn = 0.The non-singularity and regularity of quasi ZI,GP-Vˊ-rings are studied.Some new characterizations of strong regular rings are obtained.These effectively extend some known results.