Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t...Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.展开更多
Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.0...Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation.展开更多
The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix...The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.展开更多
The Pangolin, a soil-burrowing animal, is covered with scales. These scales are often abraded by soil and rock and their surface is corrugated. The abrasive wear of the surface of the scales was examined. The scales w...The Pangolin, a soil-burrowing animal, is covered with scales. These scales are often abraded by soil and rock and their surface is corrugated. The abrasive wear of the surface of the scales was examined. The scales were taken from a pangolin that had died of natural causes. The tests were run on a rotary disc abrasive wear tester. The abrasive material was quartz sand (96.5 wt.%) and bentonite (3.5 wt.%). The morphology of the abraded surfaces and the abrasion were examined by stereoscopic microscopy and scanning electron microscopy. The concepts are proposed of "Guiding-Effect" and "Rolling-Effect" on the textured surfaces under free abrasive wear conditions and the critical dimensions of the "Rolling-Effect" are discussed.展开更多
This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged...This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS.展开更多
Functionally graded Al/B_4C, Al/Si C, Al/Al_2O_3 and Al/TiB_2 composites with constant 12%(mass fraction) of reinforcement were fabricated by centrifugal casting and hollow cylindrical components were obtained. Micros...Functionally graded Al/B_4C, Al/Si C, Al/Al_2O_3 and Al/TiB_2 composites with constant 12%(mass fraction) of reinforcement were fabricated by centrifugal casting and hollow cylindrical components were obtained. Microstructural characteristics were investigated at outer surface of all composites and segregation of reinforcement particles was observed. Graded property of the composites with different reinforcements was investigated through hardness and tensile measurements. Results revealed that the outer peripheries of all composites exhibit higher hardness except in Al/B_4C composite and the outer zones of all composites show higher tensile strength. Abrasive wear test was conducted on the outer peripheries of all composites and Al/TiB_2 composite exhibits less wear rate.展开更多
The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investiga...The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.展开更多
The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel...The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.展开更多
To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chi- nese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN ...To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chi- nese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were in- vestigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates, which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.展开更多
To improve the wear resistance of cast Al?17Si?5Cu alloy(AR alloy),isothermal heat treatment is employed to modify the morphology of Si particles(particularly eutectic Si particles).Furthermore,wear behaviour of heat-...To improve the wear resistance of cast Al?17Si?5Cu alloy(AR alloy),isothermal heat treatment is employed to modify the morphology of Si particles(particularly eutectic Si particles).Furthermore,wear behaviour of heat-treated alloy(HT alloy)along with AR alloy is studied using a pin-on-disc tribometer.Worn surfaces are then characterised using scanning electron microscope.The result reveals considerable microstructural modifications after the heat treatment.Accordingly,higher hardness value in HT alloy is obtained compared with AR alloy.The overall wear rate for HT alloy is found to be significantly lower compared with AR alloy at all the applied loads,indicating remarkable improvement in wear resistance.Eutectic Si particles become from acicular/rod-like to spherical/equiaxed morphology(aspect ratio close to 1)on heat treatment,resulting in good bonding with the matrix.Thus,they remain intact during wear and being harder,providing resistance to wear.Moreover,the increased hardness on heat treatment causes further resistance to wear.Therefore,the combined effect of intact harder Si particles on the wearing surface and higher hardness results in superior wear behavior in HT alloy at all loads compared with AR alloy.展开更多
The roller-scraper tribosystem of automatic teller machine(ATM) plays an important role in reliable cash requests.However,the abrasive wear of the polymer tribosystem becomes a prominent problem when operating in sa...The roller-scraper tribosystem of automatic teller machine(ATM) plays an important role in reliable cash requests.However,the abrasive wear of the polymer tribosystem becomes a prominent problem when operating in sandy environment.The wear behavior of the tribosystem in a simulated sandy environment has been experimentally studied previously.However the abrasive wear mechanism of roller-scraper tribosystems is still unknown to new design.The wear rates of polymer rollers were examined comprehensively and several jumping variations were found in the full data extent.Three wear stages were classified by the magnitude of wear rates,and different dominant wear mechanisms corresponding with different particle diameter were found by examining the worn surfaces.Accordingly a presumption was proposed that wear mechanisms in different stages were correlated with sand particles of different diameter.In a verification experiment,three typical wear mechanisms including cutting,ploughing,and wedging were found corresponding with different wear stages by scanning electron microscope(SEM) examination.A theoretical analysis was carried out with a simplified sphere particle intrusion model and the transfer conditions for different wear mechanisms were studied referring to the slip-field theory.As a main result,three typical wear models versus friction coefficient of particle/roller,and particle radius were mapped with variant hardness of the polymer roller and ratio of contact shear stress to bulk shear stress.The result illuminated the abrasive wear mechanism during particle intrusion.Particularly,the critical transition conditions gave the basis for improving the wear performance of roller-scraper tribosystems in a sandy environment.展开更多
The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves...The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.展开更多
Ultra-high molecular weight polyethylene (UHMWPE) has been used in orthopedics as one of the materials for artificial joints in knee, hip and spine prostheses, most of the implanted joints are designed so that the met...Ultra-high molecular weight polyethylene (UHMWPE) has been used in orthopedics as one of the materials for artificial joints in knee, hip and spine prostheses, most of the implanted joints are designed so that the metal of the prosthesis is articulate against a polymeric material, however the main problems is the average life time of the UHMWPE due to wear, and the particles generated by the friction of the metal on the articulation of the polymer are the most common inducer of osteolysis, generating a loosening of the implant leading to an imminent failure resulting in the total replacement of the prosthesis. In this investigation a numerical model of abrasive wear was made using the classic Archard wear equation applied to dynamic simulation of finite element analysis (FEA) of the micro-abrasion test using a subroutine written in Fortran language linked to the finite element software to predict the rate of wear. The results of the numerical model were compared with tests of abrasive wear in the laboratory, obtaining a margin of error below 5%,concluding that the numerical model is feasible for the prediction of the rate of wear and could be applied in knowing the life cycle of joint prostheses or for the tribological analysis in industrial machinery or cutting tools. The wear coefficient (K) was obtained from the grinding tests depending on the depth of stroke of the crater, which was analyzed by 3D profilometry to obtain the wear rate and the wear constant.展开更多
The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separate...The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.展开更多
1.IntroductionBoronizing can evidently increase thesurface hardness and wear resistance of me-tallic materials[1].It is simple in technique,not expensive and widely used on tools,diesand some other parts which are eas...1.IntroductionBoronizing can evidently increase thesurface hardness and wear resistance of me-tallic materials[1].It is simple in technique,not expensive and widely used on tools,diesand some other parts which are easy towear.However the wear mechanism andbehaviour of boronized layer are not clearwhen abraded by mixed abradants such ascoal,hard mineral etc.[2,3].Several metallic materials commonly展开更多
A chemical composite plating of Ni-B_(4)C was used to prepare the surface-modified zirconia toughened alumina(ZTA)ceramic particles.The ceramic preforms were prepared by the plated ZTA and sodium silicate solution bin...A chemical composite plating of Ni-B_(4)C was used to prepare the surface-modified zirconia toughened alumina(ZTA)ceramic particles.The ceramic preforms were prepared by the plated ZTA and sodium silicate solution binder,followed by casting infiltration to prepare the ZTA particles reinforced high chromium cast iron(HCCI)composites.The result reveals that a distinct interface layer forms at the ZTA/HCCI interface,which consists of phases of ZrB_(2),FeB,Fe_(2)B,and NaSiO_(4).The interfacial wettability between ZTA and HCCI is improved by the diffusion and reaction of Ni and B_(4)C.The wear test reveals that the Ni-B_(4)C plated ZTA particles can effectively improve the wear resistance of the ZTA/HCCI composite,and the wear rate of the composite is decreased to 11.6%of HCCI.展开更多
Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825...Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.展开更多
Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar const...Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.展开更多
Abrasive wear characteristics of polyethylene, polystyrene,polymethylmethacrylate, nylon 1010 and polyvinyl chloride were investigated. The volume relativewear resistance coefficients of these thermoplastic polymers a...Abrasive wear characteristics of polyethylene, polystyrene,polymethylmethacrylate, nylon 1010 and polyvinyl chloride were investigated. The volume relativewear resistance coefficients of these thermoplastic polymers are 18%-35% (hardened and lowtemperature tempered steel 45 was used as a comparing material), and have a linear correlation withsquare roots of their cohesive energy densities. The coefficients of linear correlation is 0.949.Wear morphologies were observed by scanning electron microscope (SEM). Main wear mechanism of thethermoplastic polymers includes brittle breaking for the hard and brittle polymers & plowing andfatiguing for the soft and tough ones.展开更多
Based on previous work, abrasive wear resistance of Al 2O 3/steel composites with different Al 2O 3 particle volume fraction (VOF) at 900 ℃ was investigated. The experimental results showed that a suitable particle V...Based on previous work, abrasive wear resistance of Al 2O 3/steel composites with different Al 2O 3 particle volume fraction (VOF) at 900 ℃ was investigated. The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature. Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low, the Al 2O 3 particles are easily dug out by grits during wearing as well. When the particle VOF is 39%, the wear resistance of tested composites is excellent.展开更多
文摘Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.
基金Project (51074106) supported by the National Natural Science Foundation of ChinaProject (2009AA033501) supported by the Hi-Tech Research and Development Program of China+1 种基金Project (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (20100480586) supported by Postdoctoral Science Foundation of China
文摘Dry sliding wear tests on as-cast and cast+T6 Mg-11Y-5Gd-2Zn magnesium alloys were performed using a ball-on-plate configuration. The wear rates were measured within a load range of 3-15 N, sliding speed range of 0.03-0.24 m/s, test temperature range of 25-200 °C and at a constant sliding distance of 400 m. The wear tracks, worn surfaces and wear debris of the alloys were analyzed using scanning electron microscope (SEM). The results show that the wear rate of the alloys increases almost linearly with increasing applied load and decreases with increasing sliding speed. The wear rate of the as-cast alloy is higher than that of the cast+T6 alloy. The amount of Mg12Y1Zn1 phase, surface oxidation and retained wear debris affect the wear rate. The dominant wear mechanisms under the test condition are abrasion and plastic deformation.
基金Project supported by the Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University), ChinaProject (GJJ11094) supported by Science Funds of Jiangxi Provincial Education Project on Department, China
文摘The friction and wear behavior of magnesium matrix composites reinforced with particulate Mg2Si was characterized. The influence of Si, applied load and sliding rate on the wear behavior of Mg2Si/AM60 magnesium matrix composites was studied. The results indicate that the particulate Mg2Si can be synthesized by adding Si into magnesium alloy. The wear properties of AM60 magnesium alloy are significantly improved with MgzSi particles. The wear mass losses of AM60 magnesium alloy and MgaSi/AM60 magnesium matrix composites decrease with increase in applied load and sliding rate. The wear feature of the AM60 magnesium alloy is adhesion wear. The wear mechanism of Mg2Si/AM60 magnesium matrix composites transforms from abrasive wear to adhesion wear with the increase of load.
基金National Natural Science Foundation of China (Grant No.50675087, 50275037) National Science Fund for Distinguished Young Scholars of China (Grant No. 50025516) "Project 985" of Jilin University.
文摘The Pangolin, a soil-burrowing animal, is covered with scales. These scales are often abraded by soil and rock and their surface is corrugated. The abrasive wear of the surface of the scales was examined. The scales were taken from a pangolin that had died of natural causes. The tests were run on a rotary disc abrasive wear tester. The abrasive material was quartz sand (96.5 wt.%) and bentonite (3.5 wt.%). The morphology of the abraded surfaces and the abrasion were examined by stereoscopic microscopy and scanning electron microscopy. The concepts are proposed of "Guiding-Effect" and "Rolling-Effect" on the textured surfaces under free abrasive wear conditions and the critical dimensions of the "Rolling-Effect" are discussed.
基金supported by the National High Technology Research and Development Program of China(863 Program)(Grant No.2009AA043603-4,2009AA043604-2)by National Foundations of Agricultural Technological Transformation of China(Grant No.2009GB23600507)+1 种基金by National Natural Science Foundation of China(Grant No.50675087,50635030)by "985 Project" of Jilin University
文摘This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS.
基金Department of Science and Technology (India) for the financial support (Grant No.SR/S3/MERC/0116/2012)
文摘Functionally graded Al/B_4C, Al/Si C, Al/Al_2O_3 and Al/TiB_2 composites with constant 12%(mass fraction) of reinforcement were fabricated by centrifugal casting and hollow cylindrical components were obtained. Microstructural characteristics were investigated at outer surface of all composites and segregation of reinforcement particles was observed. Graded property of the composites with different reinforcements was investigated through hardness and tensile measurements. Results revealed that the outer peripheries of all composites exhibit higher hardness except in Al/B_4C composite and the outer zones of all composites show higher tensile strength. Abrasive wear test was conducted on the outer peripheries of all composites and Al/TiB_2 composite exhibits less wear rate.
基金the financial support received to the first author as a scholarship from MHRD,Government of India.
文摘The microstructure,mechanical properties,and the effects of sliding distance and material removal mechanism on two-body abrasive wear behaviour of hypereutectic Al-Si-Si C composite and its matrix alloy were investigated.The hypereutectic Al-Si-Si C composite was prepared by stir casting route.The hardness,ultimate tensile strength and yield strength of the composite are increased by 17%,38%,and 30%respectively compared with those of the matrix alloy,while the elongation of the composite is decreased by 48%compared with that of the matrix alloy.The wear rate of the materials is increased with increasing the abrasive size and the applied load and does not vary with the sliding distance.The wear surfaces and wear debris of the materials were characterized by high-resolution field emission scanning electron microscopy(HR FESEM)and wear mechanism was analyzed for low and high load regimes.
文摘The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.
基金Project 59974030 supported by National Natural Science Foundation of China and by Mechanical Engineering Research Laboratory, Hitachi Ltd of Japan
文摘To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chi- nese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were in- vestigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates, which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.
基金DST-SERB grant, vide Project No. YSS/2014/000172 dated 2015-08-17
文摘To improve the wear resistance of cast Al?17Si?5Cu alloy(AR alloy),isothermal heat treatment is employed to modify the morphology of Si particles(particularly eutectic Si particles).Furthermore,wear behaviour of heat-treated alloy(HT alloy)along with AR alloy is studied using a pin-on-disc tribometer.Worn surfaces are then characterised using scanning electron microscope.The result reveals considerable microstructural modifications after the heat treatment.Accordingly,higher hardness value in HT alloy is obtained compared with AR alloy.The overall wear rate for HT alloy is found to be significantly lower compared with AR alloy at all the applied loads,indicating remarkable improvement in wear resistance.Eutectic Si particles become from acicular/rod-like to spherical/equiaxed morphology(aspect ratio close to 1)on heat treatment,resulting in good bonding with the matrix.Thus,they remain intact during wear and being harder,providing resistance to wear.Moreover,the increased hardness on heat treatment causes further resistance to wear.Therefore,the combined effect of intact harder Si particles on the wearing surface and higher hardness results in superior wear behavior in HT alloy at all loads compared with AR alloy.
基金supported by National Natural Science Foundation of China (Grant No. 50905135)National Basic Research Program of China (973 Program, Grant No. 2009CB724404)+1 种基金Key Program of National Natural Science Foundation of China (Grant No. 50935004)China Postdoctoral Science Foundation (Grant No. 201003672)
文摘The roller-scraper tribosystem of automatic teller machine(ATM) plays an important role in reliable cash requests.However,the abrasive wear of the polymer tribosystem becomes a prominent problem when operating in sandy environment.The wear behavior of the tribosystem in a simulated sandy environment has been experimentally studied previously.However the abrasive wear mechanism of roller-scraper tribosystems is still unknown to new design.The wear rates of polymer rollers were examined comprehensively and several jumping variations were found in the full data extent.Three wear stages were classified by the magnitude of wear rates,and different dominant wear mechanisms corresponding with different particle diameter were found by examining the worn surfaces.Accordingly a presumption was proposed that wear mechanisms in different stages were correlated with sand particles of different diameter.In a verification experiment,three typical wear mechanisms including cutting,ploughing,and wedging were found corresponding with different wear stages by scanning electron microscope(SEM) examination.A theoretical analysis was carried out with a simplified sphere particle intrusion model and the transfer conditions for different wear mechanisms were studied referring to the slip-field theory.As a main result,three typical wear models versus friction coefficient of particle/roller,and particle radius were mapped with variant hardness of the polymer roller and ratio of contact shear stress to bulk shear stress.The result illuminated the abrasive wear mechanism during particle intrusion.Particularly,the critical transition conditions gave the basis for improving the wear performance of roller-scraper tribosystems in a sandy environment.
文摘The low stress abrasion behaviours of heat treated mild, medium carbon and high C - low Cr steels, which are generally used in making farm implements, have been investigated. The simple heat treatment greatly improves the hardness, tensile strength and abrasion resistance of medium carbon and high C - low Cr steels. The results indicate that the material removal during abrasion is controlled by a number of factors, such as hardness, chemical composition, microstructure and heat treatment conditions. The conclusion is that the heat treated high C - low Cr steel and mild steel carburized by using coaltar pitch provide the best hardness and abrasion resistance and thus appear to be the most suitable materials for making agricultural tools.
文摘Ultra-high molecular weight polyethylene (UHMWPE) has been used in orthopedics as one of the materials for artificial joints in knee, hip and spine prostheses, most of the implanted joints are designed so that the metal of the prosthesis is articulate against a polymeric material, however the main problems is the average life time of the UHMWPE due to wear, and the particles generated by the friction of the metal on the articulation of the polymer are the most common inducer of osteolysis, generating a loosening of the implant leading to an imminent failure resulting in the total replacement of the prosthesis. In this investigation a numerical model of abrasive wear was made using the classic Archard wear equation applied to dynamic simulation of finite element analysis (FEA) of the micro-abrasion test using a subroutine written in Fortran language linked to the finite element software to predict the rate of wear. The results of the numerical model were compared with tests of abrasive wear in the laboratory, obtaining a margin of error below 5%,concluding that the numerical model is feasible for the prediction of the rate of wear and could be applied in knowing the life cycle of joint prostheses or for the tribological analysis in industrial machinery or cutting tools. The wear coefficient (K) was obtained from the grinding tests depending on the depth of stroke of the crater, which was analyzed by 3D profilometry to obtain the wear rate and the wear constant.
文摘The tribological behaviour of gravity die stir cast LM6alloy with graphite(Gr)and silicon nitride nanoparticles was investigated.Al?Gr?Si3N4hybrid composite,Al?Si3N4nanocomposite and Al?Gr nanocomposites were separately fabricated to investigate their frictional and wear characteristics under dry sliding conditions.EDS was used to ensure the uniform presence of nano Si3N4and graphite in the cast.L9orthogonal array method was chosen to conduct the experiments to study the effect of different applied loads(20,30and40N)and sliding distances(1,2and3km).The results showed that the respective wear rate and coefficient of friction(COF)decreased by25%and15%for hybrid composite when compared with those of Al?Si3N4nanocomposite whereas the wear rate and COF of Al?Gr was found to be very minimal.The micro Vickers hardness of the hybrid composite was14%more than that of the simple nanocomposite and there was not much notable variation for Al?Gr and Al?Si3N4nanocomposite materials.Scanning electron microscope was used to analyze the worn surface and subsurface,from which it was noted that the predominant wear mechanisms observed were abrasive for nanocomposite and both abrasive and adhesive mechanism for hybrid composite.Analysis of variance(ANOVA)and F-test were used to check the validity model and to determine the significant parameters affecting the wear rates.
文摘1.IntroductionBoronizing can evidently increase thesurface hardness and wear resistance of me-tallic materials[1].It is simple in technique,not expensive and widely used on tools,diesand some other parts which are easy towear.However the wear mechanism andbehaviour of boronized layer are not clearwhen abraded by mixed abradants such ascoal,hard mineral etc.[2,3].Several metallic materials commonly
基金financially supported by the National Natural Science Foundation of China(52005217)the University Research Platform and Research Projects of Guangdong Education Department(2022ZDZX3003)+2 种基金Basic and Applied Basic Research Fund Project of Guangdong Province in China(2022A1515010091,2021A1515010523,and 2020A1515110020)Basic Scientific Research Projects of Central Universities(No.21620344)Jinan University Open Fund for Advanced Materials(JNIWRM2021004)。
文摘A chemical composite plating of Ni-B_(4)C was used to prepare the surface-modified zirconia toughened alumina(ZTA)ceramic particles.The ceramic preforms were prepared by the plated ZTA and sodium silicate solution binder,followed by casting infiltration to prepare the ZTA particles reinforced high chromium cast iron(HCCI)composites.The result reveals that a distinct interface layer forms at the ZTA/HCCI interface,which consists of phases of ZrB_(2),FeB,Fe_(2)B,and NaSiO_(4).The interfacial wettability between ZTA and HCCI is improved by the diffusion and reaction of Ni and B_(4)C.The wear test reveals that the Ni-B_(4)C plated ZTA particles can effectively improve the wear resistance of the ZTA/HCCI composite,and the wear rate of the composite is decreased to 11.6%of HCCI.
文摘Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The rickets microhardness, D (HV0.2), and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Csul) was maintained at 100 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.
文摘Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.
文摘Abrasive wear characteristics of polyethylene, polystyrene,polymethylmethacrylate, nylon 1010 and polyvinyl chloride were investigated. The volume relativewear resistance coefficients of these thermoplastic polymers are 18%-35% (hardened and lowtemperature tempered steel 45 was used as a comparing material), and have a linear correlation withsquare roots of their cohesive energy densities. The coefficients of linear correlation is 0.949.Wear morphologies were observed by scanning electron microscope (SEM). Main wear mechanism of thethermoplastic polymers includes brittle breaking for the hard and brittle polymers & plowing andfatiguing for the soft and tough ones.
文摘Based on previous work, abrasive wear resistance of Al 2O 3/steel composites with different Al 2O 3 particle volume fraction (VOF) at 900 ℃ was investigated. The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature. Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low, the Al 2O 3 particles are easily dug out by grits during wearing as well. When the particle VOF is 39%, the wear resistance of tested composites is excellent.