The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati...The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.展开更多
This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face....This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.展开更多
基金Project(U1234211)supported of the National Natural Science Foundation of ChinaProject(20120009110020)supported by the Specialized Research Fund for Ph.D. Programs of Foundation of Ministry of Education of ChinaProject(SHGF-11-32)supported the Scientific and Technological Innovation Project of China Shenhua Energy Company Limited
文摘The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset of each bogie, the development of wear is gradually concentrated on the flange and the developing speed increases continually with the increase of traveled distance.
文摘This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.