Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions ...Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions has been investigated and many experiments have been completed with a newly developed full-scale casing wear test machine. Test results present that adhesion wear, contact fatigue, and grinding abrasion are the main wear mechanisms under impact-sliding test conditions. The friction coefficient and linear wear rate of the casing rise obviously with an increase in impact load. And the larger the impact load, the rougher the worn surface of the casing. The linear wear rate decreased slightly but the average friction coefficient increased slightly with an increase in impact frequency under an impact load of 2,500 N. Both the linear wear rate of the casing and the average friction coefficient increased substantially with an increase in impact frequency under an impact load of 4,000 N. Under lower impact load conditions, grinding abrasion and contact fatigue are the main mechanisms of casing wear; under higher impact load conditions, adhesion wear and contact fatigue are the main mechanisms of casing wear.展开更多
基金supported by the National Natural Science Foundation of China (No.50475037)
文摘Theoretical analysis and field monitoring show that lateral vibration has very important effect on casing wear in deep & ultra-deep well drilling. The wear mechanism of casing under impact-sliding work conditions has been investigated and many experiments have been completed with a newly developed full-scale casing wear test machine. Test results present that adhesion wear, contact fatigue, and grinding abrasion are the main wear mechanisms under impact-sliding test conditions. The friction coefficient and linear wear rate of the casing rise obviously with an increase in impact load. And the larger the impact load, the rougher the worn surface of the casing. The linear wear rate decreased slightly but the average friction coefficient increased slightly with an increase in impact frequency under an impact load of 2,500 N. Both the linear wear rate of the casing and the average friction coefficient increased substantially with an increase in impact frequency under an impact load of 4,000 N. Under lower impact load conditions, grinding abrasion and contact fatigue are the main mechanisms of casing wear; under higher impact load conditions, adhesion wear and contact fatigue are the main mechanisms of casing wear.