Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-Si...Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.展开更多
Laser cladding experiments were carried out on Ti-6Al-4V alloy with Ti+33%TiC(volume fraction) powders. Laser processing parameters were studied systematically to investigate the influences on the surface quality. Mic...Laser cladding experiments were carried out on Ti-6Al-4V alloy with Ti+33%TiC(volume fraction) powders. Laser processing parameters were studied systematically to investigate the influences on the surface quality. Microstructure, microhardness and wear resistance of the clad layer were evaluated. The results show that the laser parameter has considerable influence on microstructure and wear resistance of laser clad layer. With the optimized technical parameters, a clad layer with good surface quality and uniform microstnicture was obtained. The microhardness of the clad layer HV0.2 is 1 080, and the wear rate is reduced by 57 times.展开更多
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die...Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.展开更多
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t...Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.展开更多
EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃...EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.展开更多
There are few biomechanical studies on Interspinous Process Implants (IPD);however none investigate the amount of wear on spinous processes. Therefore the objective of the present study was to investigate the effect o...There are few biomechanical studies on Interspinous Process Implants (IPD);however none investigate the amount of wear on spinous processes. Therefore the objective of the present study was to investigate the effect of repetitive loading of the IPD Aperius on the spinous processes in a biomechanical porcine model. For comparison, three patients treated surgically with the same device have been followed for one to two years clinically and with image analyses (X-rays, MRI, CT-scans). Four lumbar spines from 6 months old porcine were divided into seven segments, which received IPD. The segments were exposed to 20,000 cyclical loads. Afterwards the deformation (wear) of the segments was registered. The wear of the spinous processes was measured in mm on a following CT-scan. Additionally, the wear of the ex-vivo was compared to that of the spinous processes investigated by CT-scans or X-ray in three patients treated surgically with the same interspinous implant. The mean maximal deformation of porcine specimens was 1.79 mm (SD 0.25) with the largest deformation occurring in the first quarter of the loading (<5000 cycles). The mean wear of the spinous processes after loading was 6.57 mm. A similar level of wear (mean 12.7 mm) of the spinous processes was detected in the patients. The Aperius IPD creates significant wear on the spinous processes in an experimental biomechanical study. Similar wear of the spinous processes is also present in patients treated with the same device post-operatively. How these findings influence the short and long term result of this implant device remains to be investigated in further biomechanical as well as clinical studies. For future development of this type of devices a proper selection of materials and design is essential to minimize wear effects on the spinous processes and thereby increases the possibilities for the devices to function as suggested.展开更多
A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe...A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ± 2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity(TRIP) effect to improve wear resistance under certain load conditions.展开更多
Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring m...Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring means. The wear mechanism judgment with characteristic wear debris has been widely adopted in off-line wear analysis; however, on-line wear mechanism characterization remains a big problem. In this paper, the wear mechanism identification via on-line ferrograph images is studied. To obtain isolated wear debris in an on-line ferrograph image, the deposition mechanism of wear debris in on-line ferrograph sensor is studied. The study result shows wear debris chain is the main morphology due to local magnetic field around the deposited wear debris. Accordingly, an improved sampling route for on-line wear debris deposition is designed with focus on the self-adjustment deposition time. As a result, isolated wear debris can be obtained in an on-line image, which facilitates the feature extraction of characteristic wear debris. By referring to the knowledge of analytical ferrograph, four dimensionless morphological features, including equivalent dimension, length-width ratio, shape factor, and contour fractal dimension of characteristic wear debris are extracted for distinguishing four typical wear mechanisms including normal, cutting, fatigue, and severe sliding wear. Furthermore, a feed-forward neural network is adopted to construct an automatic wear mechanism identification model. By training with the samples from analytical ferrograph, the model might identify some typical characteristic wear debris in an on-line ferrograph image. This paper performs a meaningful exploratory for on-line wear mechanism analysis, and the obtained results will provide a feasible way for on-line wear state monitoring.展开更多
Wear particles are inevitably occurred from moving parts, such as a piston-cylinder made from steel or hybrid materials. And a durability of these parts must be evaluated. The wear particle analysis has been known as ...Wear particles are inevitably occurred from moving parts, such as a piston-cylinder made from steel or hybrid materials. And a durability of these parts must be evaluated. The wear particle analysis has been known as a very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it is not laid down to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in a durability evaluation of machine parts, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particles in one image. In this work, the lubricated friction experiment was carried out in order to establish the optimum image capture with the 1045 specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image. The results show that capturing conditions need to be more than 140 wear particles in one image and over 40 images for the reliable data. Thus, the capturing method of wear particles images was optimized for condition diagnosis of machine moving parts.展开更多
As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear deb...As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles due to the low resolution, high contamination and particle’s chain pattern of an on-line image sample. In this work, statistical dimension of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph image is decomposed into four component images with different frequencies. By doing this, the size of each component image is reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle coverage area (IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound information about wear severity.展开更多
An innovative technique, friction stir processing (FSP) was employed to modify the surface layer of Al5083 alloy. The FSP passes of 1 to 4 were applied on alloy samples. The processed samples were subjected to microst...An innovative technique, friction stir processing (FSP) was employed to modify the surface layer of Al5083 alloy. The FSP passes of 1 to 4 were applied on alloy samples. The processed samples were subjected to microstructural analysis and dry sliding wear test. FSP resulted in microstructural refinement and improvement in wear resistance of Al5083. Moreover, the results indicated that the more number of FSP passes were found to be more effective in improvement of wear resistance, due to more microstructural refinement. It was also found that the load bearing capacity of samples significantly improved with increasing the number of FSP展开更多
Surface properties decide the fatigue, wear and corrosion behavior of a material. Hence their performance can be improved by surface modifications. Friction Stir Processing (FSP) is a promising technique to develop su...Surface properties decide the fatigue, wear and corrosion behavior of a material. Hence their performance can be improved by surface modifications. Friction Stir Processing (FSP) is a promising technique to develop surface composite. The aim of the present study is to develop defect free surface composite of Al 5083 alloy reinforced with TiC particles and investigate the particle distribution in the matrix, mechanical properties and wear behavior of the composites. Microstructural observations were carried out by using optical and scanning electron microscopy (SEM). The microstructural studies revealed that distribution of particles were more uniform in samples subjected to double pass than the single pass FSP. The microhardness profiles along top surface and across the cross section of the processed samples were evaluated. The average hardness along the top surface was found to increase by 27.27%, as compared to that of the base metal (88Hv). The particles were incorporated maximum average depth about 250μm in the surface composite. The slurry erosion tests revealed that the wear rate was highly reduced in case of double pass FSP samples as compared to base metal and single pass FSPed展开更多
Laser shock processing (LSP) is a new surface treatment technique for improving hardness, wear resistance, and fatigue. In this paper, basic theories were introduced and the influence of laser pulse intensity on the...Laser shock processing (LSP) is a new surface treatment technique for improving hardness, wear resistance, and fatigue. In this paper, basic theories were introduced and the influence of laser pulse intensity on the laser shock processing of brass specimens was investigated by experiments. Microhardness, roughness, microstructure, wear resistance, friction coefficient evolution, and residual stress were examined with different laser pulse intensities of LSP. The results show that the microhardness increases after LSP treatment, and the higher the pulse intensity, the higher the microhardness. Though the microstructure shows no remarkable change, the roughness and wear resistance increase with the increase in pulse density. Laser shock processing has great potential as a means to improve the mechanical properties of components.展开更多
The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawin...The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawing force was investigated. The wear mechanisms of the ceramic drawing dies were investigated. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy. The results show that lubricant media have great influence on the drawing force. The drawing force is the smallest when a grease lubricant is used. But alteration of drawing velocity has scarcely any influence on the drawing force. Detailed observations and analyses of the die wear surface reveal that the most common failure of the ceramic drawing die is the wear in the invariable zone and bearing zone owing to the greater press stresses. Abrasive and adhesive wear are found to be the predominant wear mechanisms for ceramic drawing die.展开更多
Aluminum alloys are used frequently in aerospace and ship building industry. Due to poor wear and corrosion resistance, conventional aluminum alloys are replaced by metal matrix composites (MMC). Aluminum alloy matrix...Aluminum alloys are used frequently in aerospace and ship building industry. Due to poor wear and corrosion resistance, conventional aluminum alloys are replaced by metal matrix composites (MMC). Aluminum alloy matrix reinforced with ceramic particles (TiB2) has importance in industry where components slide each other. The main task is to produce MMCs with low cost effective way to meet the requirement. In this study, an attempt is made to produce AA6061/TiB2 MMCs with different volume fractions of ceramic particles using friction stir processing technique. The dry sliding wear behavior of composites was investigated using pin on disc method. The lowest wear resistance has obtained for 8% composite. The corrosion of composites was analyzed by salt spray method. It was found that wear and corrosion resistance was increased with increase of reinforcement which was higher for 8% composite.展开更多
In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were...In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.展开更多
基金The project was supported by Yunnan Provincial Natural Science Foundation (95B11-5).
文摘Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.
基金Project(11513099) supported by Scientific Research Fund of Heilongjiang Provincial Education Department
文摘Laser cladding experiments were carried out on Ti-6Al-4V alloy with Ti+33%TiC(volume fraction) powders. Laser processing parameters were studied systematically to investigate the influences on the surface quality. Microstructure, microhardness and wear resistance of the clad layer were evaluated. The results show that the laser parameter has considerable influence on microstructure and wear resistance of laser clad layer. With the optimized technical parameters, a clad layer with good surface quality and uniform microstnicture was obtained. The microhardness of the clad layer HV0.2 is 1 080, and the wear rate is reduced by 57 times.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51575147)the Science Funds for the Young Innovative Talents of HUST(Grant No.201507)
文摘Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.
基金Financial assistance from Armament Research Board, New Delhi, India
文摘Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.
文摘EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.
文摘There are few biomechanical studies on Interspinous Process Implants (IPD);however none investigate the amount of wear on spinous processes. Therefore the objective of the present study was to investigate the effect of repetitive loading of the IPD Aperius on the spinous processes in a biomechanical porcine model. For comparison, three patients treated surgically with the same device have been followed for one to two years clinically and with image analyses (X-rays, MRI, CT-scans). Four lumbar spines from 6 months old porcine were divided into seven segments, which received IPD. The segments were exposed to 20,000 cyclical loads. Afterwards the deformation (wear) of the segments was registered. The wear of the spinous processes was measured in mm on a following CT-scan. Additionally, the wear of the ex-vivo was compared to that of the spinous processes investigated by CT-scans or X-ray in three patients treated surgically with the same interspinous implant. The mean maximal deformation of porcine specimens was 1.79 mm (SD 0.25) with the largest deformation occurring in the first quarter of the loading (<5000 cycles). The mean wear of the spinous processes after loading was 6.57 mm. A similar level of wear (mean 12.7 mm) of the spinous processes was detected in the patients. The Aperius IPD creates significant wear on the spinous processes in an experimental biomechanical study. Similar wear of the spinous processes is also present in patients treated with the same device post-operatively. How these findings influence the short and long term result of this implant device remains to be investigated in further biomechanical as well as clinical studies. For future development of this type of devices a proper selection of materials and design is essential to minimize wear effects on the spinous processes and thereby increases the possibilities for the devices to function as suggested.
基金financially supported by the National Natural Science Foundation of China(Nos.51475480 and U1637601)the Research Funding from the State Key Laboratory of High-Performance Complex Manufacturing(No.ZZYJKT2017-01)+1 种基金Innovation Platform and Talent Plan of Hunan Province(No.2016RS2015)the Project of Innovation Driven Plan in Central South University(No.2015CX002)
文摘A quenching and partitioning(Q&P) process was applied to vanadium carbide particle(VCp)-reinforced Fe-matrix composites(VC-Fe-MCs) to obtain a multiphase microstructure comprising VC, V8 C7, M3 C, α-Fe, and γ-Fe. The effects of the austenitizing temperature and the quenching temperature on the microstructure, mechanical properties, and wear resistance of the VC-Fe-MCs were studied. The results show that the size of the carbide became coarse and that the shape of some particles began to transform from diffused graininess into a chrysanthemum-shaped structure with increasing austenitizing temperature. The microhardness decreased with increasing austenitizing temperature but substantially increased after wear testing compared with the microhardness before wear testing; the microhardness values improved by 20.0% ± 2.5%. Retained austenite enhanced the impact toughness and promoted the transformation-induced plasticity(TRIP) effect to improve wear resistance under certain load conditions.
基金supported by National Natural Science Foundation of China(Grant Nos.50905135,51275381)
文摘Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring means. The wear mechanism judgment with characteristic wear debris has been widely adopted in off-line wear analysis; however, on-line wear mechanism characterization remains a big problem. In this paper, the wear mechanism identification via on-line ferrograph images is studied. To obtain isolated wear debris in an on-line ferrograph image, the deposition mechanism of wear debris in on-line ferrograph sensor is studied. The study result shows wear debris chain is the main morphology due to local magnetic field around the deposited wear debris. Accordingly, an improved sampling route for on-line wear debris deposition is designed with focus on the self-adjustment deposition time. As a result, isolated wear debris can be obtained in an on-line image, which facilitates the feature extraction of characteristic wear debris. By referring to the knowledge of analytical ferrograph, four dimensionless morphological features, including equivalent dimension, length-width ratio, shape factor, and contour fractal dimension of characteristic wear debris are extracted for distinguishing four typical wear mechanisms including normal, cutting, fatigue, and severe sliding wear. Furthermore, a feed-forward neural network is adopted to construct an automatic wear mechanism identification model. By training with the samples from analytical ferrograph, the model might identify some typical characteristic wear debris in an on-line ferrograph image. This paper performs a meaningful exploratory for on-line wear mechanism analysis, and the obtained results will provide a feasible way for on-line wear state monitoring.
基金Project supported by Research Funds from Dong-A University,Korea
文摘Wear particles are inevitably occurred from moving parts, such as a piston-cylinder made from steel or hybrid materials. And a durability of these parts must be evaluated. The wear particle analysis has been known as a very effective method to foreknow and decide a moving situation and a damage of machine parts by using the digital computer image processing. But it is not laid down to calculate shape parameters of wear particle and wear volume. In order to apply image processing method in a durability evaluation of machine parts, it needs to verify the reliability of the calculated data by the image processing and to lay down the number of images and the amount of wear particles in one image. In this work, the lubricated friction experiment was carried out in order to establish the optimum image capture with the 1045 specimen under experiment condition. The wear particle data were calculated differently according to the number of image and the amount of wear particle in one image. The results show that capturing conditions need to be more than 140 wear particles in one image and over 40 images for the reliable data. Thus, the capturing method of wear particles images was optimized for condition diagnosis of machine moving parts.
基金Supported by the National Natural Science Foundation of China (GrantNos.51275381,50905135)Shaanxi Provincial Science and Technology Planning Project of China (Grant No.2012GY2-37)
文摘As one of the most wear monitoring indicator, dimensional feature of individual particles has been studied mostly focusing on off-line analytical ferrograph. Recent development in on-line wear monitoring with wear debris images shows that merely wear debris concentration has been extracted from on-line ferrograph images. It remains a bottleneck of obtaining the dimension of on-line particles due to the low resolution, high contamination and particle’s chain pattern of an on-line image sample. In this work, statistical dimension of wear debris in on-line ferrograph images is investigated. A two-step procedure is proposed as follows. First, an on-line ferrograph image is decomposed into four component images with different frequencies. By doing this, the size of each component image is reduced by one fourth, which will increase the efficiency of subsequent processing. The low-frequency image is used for extracting the area of wear debris, and the high-frequency image is adopted for extracting contour. Second, a statistical equivalent circle dimension is constructed by equaling the overall wear debris in the image into equivalent circles referring to the extracted total area and premeter of overall wear debris. The equivalent circle dimension, reflecting the statistical dimension of larger wear debris in an on-line image, is verified by manual measurement. Consequently, two preliminary applications are carried out in gasoline engine bench tests of durability and running-in. Evidently, the equivalent circle dimension, together with the previously developed concentration index, index of particle coverage area (IPCA), show good performances in characterizing engine wear conditions. The proposed dimensional indicator provides a new statistical feature of on-line wear particles for on-line wear monitoring. The new dimensional feature conveys profound information about wear severity.
文摘An innovative technique, friction stir processing (FSP) was employed to modify the surface layer of Al5083 alloy. The FSP passes of 1 to 4 were applied on alloy samples. The processed samples were subjected to microstructural analysis and dry sliding wear test. FSP resulted in microstructural refinement and improvement in wear resistance of Al5083. Moreover, the results indicated that the more number of FSP passes were found to be more effective in improvement of wear resistance, due to more microstructural refinement. It was also found that the load bearing capacity of samples significantly improved with increasing the number of FSP
文摘Surface properties decide the fatigue, wear and corrosion behavior of a material. Hence their performance can be improved by surface modifications. Friction Stir Processing (FSP) is a promising technique to develop surface composite. The aim of the present study is to develop defect free surface composite of Al 5083 alloy reinforced with TiC particles and investigate the particle distribution in the matrix, mechanical properties and wear behavior of the composites. Microstructural observations were carried out by using optical and scanning electron microscopy (SEM). The microstructural studies revealed that distribution of particles were more uniform in samples subjected to double pass than the single pass FSP. The microhardness profiles along top surface and across the cross section of the processed samples were evaluated. The average hardness along the top surface was found to increase by 27.27%, as compared to that of the base metal (88Hv). The particles were incorporated maximum average depth about 250μm in the surface composite. The slurry erosion tests revealed that the wear rate was highly reduced in case of double pass FSP samples as compared to base metal and single pass FSPed
文摘Laser shock processing (LSP) is a new surface treatment technique for improving hardness, wear resistance, and fatigue. In this paper, basic theories were introduced and the influence of laser pulse intensity on the laser shock processing of brass specimens was investigated by experiments. Microhardness, roughness, microstructure, wear resistance, friction coefficient evolution, and residual stress were examined with different laser pulse intensities of LSP. The results show that the microhardness increases after LSP treatment, and the higher the pulse intensity, the higher the microhardness. Though the microstructure shows no remarkable change, the roughness and wear resistance increase with the increase in pulse density. Laser shock processing has great potential as a means to improve the mechanical properties of components.
基金Project(B0614) supported by the Natural Science Foundation of University of Jinan, ChinaProject(20030422105) supported by the Specialized Research Fund for Doctoral Program of Higher Education, China+1 种基金Project(Y2004F08) supported by the Natural Science Foundation of Shandong Province, ChinaProject(NCET-04-0622) supported by the Program for New Century Excellent Talents in University, China.
文摘The suitable test equipment for wire-drawing was designed. Wire-drawing tests were carried on with this equipment for TiC/Al2O3 ceramic wire-drawing die. Effect of lubrication medium and drawing velocity on the drawing force was investigated. The wear mechanisms of the ceramic drawing dies were investigated. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy. The results show that lubricant media have great influence on the drawing force. The drawing force is the smallest when a grease lubricant is used. But alteration of drawing velocity has scarcely any influence on the drawing force. Detailed observations and analyses of the die wear surface reveal that the most common failure of the ceramic drawing die is the wear in the invariable zone and bearing zone owing to the greater press stresses. Abrasive and adhesive wear are found to be the predominant wear mechanisms for ceramic drawing die.
文摘Aluminum alloys are used frequently in aerospace and ship building industry. Due to poor wear and corrosion resistance, conventional aluminum alloys are replaced by metal matrix composites (MMC). Aluminum alloy matrix reinforced with ceramic particles (TiB2) has importance in industry where components slide each other. The main task is to produce MMCs with low cost effective way to meet the requirement. In this study, an attempt is made to produce AA6061/TiB2 MMCs with different volume fractions of ceramic particles using friction stir processing technique. The dry sliding wear behavior of composites was investigated using pin on disc method. The lowest wear resistance has obtained for 8% composite. The corrosion of composites was analyzed by salt spray method. It was found that wear and corrosion resistance was increased with increase of reinforcement which was higher for 8% composite.
文摘In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.