The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-change...The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .展开更多
A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacr...A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.展开更多
With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant ...With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.展开更多
During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetiz...During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetization-axes of the hard magnetic phases(Nd2Fe14B,SmCo5 or Sm2Co17 type)in their designed directions have been studied.In Fe-Pt nano-composite magnets,attempts have been taken to promote phase transformation from disordered,soft magnetic A1 to ordered,hard magnetic L10 FePt phase at reduced temperatures.The dependence of the magnetization and reversal magnetization processes on the microstructures,involving the morphology and three critical sizes of particles of the FePt nano-composite magnets,are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO(001)substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change,where the coercive force increases abruptly.The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones,where the coercive force is still increased.And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size,where the increase of the coercive force keeps on.However,when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state,the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect.Meanwhile,due to the size effect,Curie temperature of the ultra-small FePt particles reduces.展开更多
The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excel...The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excellent properties such as improved hardness and wear resistance along with sustained corrosion resistance. The concentrated nitrogen via SPN process was injected to form S-phase with time at 713 K. This study was carried out under the conditions of 44 at% of nitrogen injection, which was higher than 25 at% known as the condition of no precipitation of S-phase formed by the SPN process, and 20 K higher than the maximum temperature without precipitation phase. The hardness analysis of stainless steel sample treated by the SPN process at 713 K showed a much higher value than the typical nitriding hardness at a depth of lower nitrogen than the maximum nitrogen concentration. The SPN 20 hr treated specimen showed the average value of 2339 HV while 40 hr showed the average value of 2215 HV. The result is attributed to the concentrated nitrogen formed in the SPN process reacting with the alloying elements contained in the base material to form fine precipitates, thus producing a synergy effect of the extreme hardening effect;that is, the movement of precipitates and dislocations due to the GP-zone (Guinier-Preston zone).展开更多
The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductiv...The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.展开更多
Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys i...Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.展开更多
文摘The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. .
文摘A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.
文摘With its high strength and hardness, wear-resistant steel has become an important material in the field of construction machinery manufacturing.Given that quenching technology is a crucial component of wear-resistant steel production, the selection of the cooling method to be used during this process is important.In this study, the feasibility of quenching wear-resistant steel by air-atomized water spray cooling was studied, and the cooling rate, microstructure, and hardness of wear-resistant steel under various cooling device structures were analyzed.The results reveal that the air-atomized water spray cooling method is an effective technique in quenching wear-resistant steel.Furthermore, martensite and uniform hardness were obtained by the air-atomized water spray cooling technique.As the space between the nozzles in each row in the device increased, the cooling rate was reduced during quenching.Meanwhile, the martensite content decreased, and more carbides were observed in the martensitic structure.A mixture comprising self-tempered martensite and bainite was formed at a large distance over a longer period of time.All these factors resulted in lower hardness and worse property uniformity.
基金Project(2004CCA04000)supported by the National Basic Research Program of ChinaProject(50744014)supported by the National Natural Science Foundation of China+3 种基金Project(2008C21046)supported by Science and Technology Department of Zhejiang Province,ChinaProject(Y406389)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(2006B100054)supported by Ningbo Bureau of Science and Technology,ChinaProject supported by K.C.Wong Magna Found in Ningbo University,China
文摘During the process of directional solidification,laser remelting/solidification in the layer on sintered magnets, die-upsetting of cast magnets,or die-upsetting of nano-composites,the arrangements of the easy-magnetization-axes of the hard magnetic phases(Nd2Fe14B,SmCo5 or Sm2Co17 type)in their designed directions have been studied.In Fe-Pt nano-composite magnets,attempts have been taken to promote phase transformation from disordered,soft magnetic A1 to ordered,hard magnetic L10 FePt phase at reduced temperatures.The dependence of the magnetization and reversal magnetization processes on the microstructures,involving the morphology and three critical sizes of particles of the FePt nano-composite magnets,are summarized. With the decrease of the nominal thickness of the anisotropic FePt film epitaxially grown on the single crystal MgO(001)substrate, the reversal magnetization process firstly changes from full domain wall displacement to partial magnetic wall pinning related to the morphology change,where the coercive force increases abruptly.The reversal magnetization process secondly changes from magnetic wall pinning to incoherent magnetization rotation associated with the particles being below the first critical size at which multi-domain particles turn into single domain ones,where the coercive force is still increased.And the reversal magnetization mode thirdly changes from incoherent to coherent rotation referred to the second critical size,where the increase of the coercive force keeps on.However,when the particle size decreases to approach the third critical size where the particles turn into the supperparamagnetic state,the coercive force begins to decrease due to the interplay of the size effect and the incomplete ordering induced by the size effect.Meanwhile,due to the size effect,Curie temperature of the ultra-small FePt particles reduces.
文摘The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excellent properties such as improved hardness and wear resistance along with sustained corrosion resistance. The concentrated nitrogen via SPN process was injected to form S-phase with time at 713 K. This study was carried out under the conditions of 44 at% of nitrogen injection, which was higher than 25 at% known as the condition of no precipitation of S-phase formed by the SPN process, and 20 K higher than the maximum temperature without precipitation phase. The hardness analysis of stainless steel sample treated by the SPN process at 713 K showed a much higher value than the typical nitriding hardness at a depth of lower nitrogen than the maximum nitrogen concentration. The SPN 20 hr treated specimen showed the average value of 2339 HV while 40 hr showed the average value of 2215 HV. The result is attributed to the concentrated nitrogen formed in the SPN process reacting with the alloying elements contained in the base material to form fine precipitates, thus producing a synergy effect of the extreme hardening effect;that is, the movement of precipitates and dislocations due to the GP-zone (Guinier-Preston zone).
基金Project(5157406)supported by the National Natural Science Foundation of China
文摘The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.
文摘Electron Beam Welding (EBW) is employed to both melt and unite materials, influencing their thermal history and subsequently determining the microstructure and properties of the welded joint. Welding Titanium alloys involves undergoing local melting and rapid solidification, subjecting the material to thermal stresses induced by a thermal expansion coefficient of 9.5 × 10 m/m°C. This process, reaching range temperatures from the full melting alloy to room temperature, results in phase formation dictated by the thermodynamic preferences of the alloyed elements, posing a significant challenge. Recent efforts in simulation and calculations have been undertaken elsewhere to address this challenge. This study focuses on a joint of two plates with differing cross-sectional areas, influencing heat transfer during welding. This report presents a case study focusing on the metallurgical changes observed in the microstructure within the welded zone, emphasizing alterations in the cooling rate of the welded joint. The investigation utilizes optical metallography, Vickers’s Hardness testing, and SEM (scanning electron microscopy) to comprehensively characterize the observed changes in addition to heat transfer simulation of the welded zone.