Conventional glassy carbon electrodes(GCE)cannot meet the requirements of future electrodes for wider use due to low conductivity,high cost,non-portability,lack of flexibility.Therefore,cost-effective and wearable ele...Conventional glassy carbon electrodes(GCE)cannot meet the requirements of future electrodes for wider use due to low conductivity,high cost,non-portability,lack of flexibility.Therefore,cost-effective and wearable electrode enabling rapid and versatile molecule detection is becoming important,especially with the ever-increasing demand for health monitoring and point-ofcare diagnosis.Graphene is considered as an ideal electrode due to its excellent physicochemical properties.Here,we prepare graphene film with ultra-high conductivity and customize the 3-electrode system via a facile and highly controllable laser engraving approach.Benefiting from the ultra-high conductivity(5.65×10^(5)S·m^(−1)),the 3-electrode system can be used as multifunctional electrode for direct detection of dopamine(DA)and enzyme-based detection of glucose without further metal deposition.The dynamic ranges from 1–200μM to 0.5–8.0 mM were observed for DA and glucose,respectively,with a limit of detection(LOD)of 0.6μM and 0.41 mM.Overall,the excellent target detection capability caused by the ultra-high conductivity and ease modification of graphene films,together with their superb mechanical properties and ease of mass-produced,provides clear potential not only for replacing GCE for various electrochemical studies but also for the development of portable and highperformance electrochemical wearable medical devices.展开更多
Triboelectric nanogenerators(TENGs)are considered as an ideal platform for power harvesting for living organisms,thanks to their unique characteristics like flexibility,conversion efficient,and manufacturing cost.Rece...Triboelectric nanogenerators(TENGs)are considered as an ideal platform for power harvesting for living organisms,thanks to their unique characteristics like flexibility,conversion efficient,and manufacturing cost.Recent advances in TENGs have brought innovative solutions for clinical healthcare.Particularly,TENGs offer novel solutions of continues power supply for wearable and implantable medical devices with lightweight,thinness,good biocompatibility,and excellent soft tissue conformability.In this review,we discuss(1)The working principle and representative structure of TENGs,(2)the material selection of TENGs,(3)the recent progression of application of TENG in the medical field of cardiovascular system,nervous system,respiratory system,microbial inactivation,antibiofouling,disinfection,and tissue repair,(4)challenges and future perspectives of TENG-based medical devices.The emerging TENGs and their applications in medicine cannot simply be seen as an alternative to conventional power supplies,it provides a revolutionary solution for wearable and implantable medical devices,and they will surely change the paradigm of disease diagnosis and treatment in the future.展开更多
基金the National Natural Science Foundation of China(Nos.51672204 and 22102128)the Fundamental Research Funds for the Central Universities(WUT:2021IVA66,WUT:2022IVA172,and WUT:2020IB005)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.520LH054).
文摘Conventional glassy carbon electrodes(GCE)cannot meet the requirements of future electrodes for wider use due to low conductivity,high cost,non-portability,lack of flexibility.Therefore,cost-effective and wearable electrode enabling rapid and versatile molecule detection is becoming important,especially with the ever-increasing demand for health monitoring and point-ofcare diagnosis.Graphene is considered as an ideal electrode due to its excellent physicochemical properties.Here,we prepare graphene film with ultra-high conductivity and customize the 3-electrode system via a facile and highly controllable laser engraving approach.Benefiting from the ultra-high conductivity(5.65×10^(5)S·m^(−1)),the 3-electrode system can be used as multifunctional electrode for direct detection of dopamine(DA)and enzyme-based detection of glucose without further metal deposition.The dynamic ranges from 1–200μM to 0.5–8.0 mM were observed for DA and glucose,respectively,with a limit of detection(LOD)of 0.6μM and 0.41 mM.Overall,the excellent target detection capability caused by the ultra-high conductivity and ease modification of graphene films,together with their superb mechanical properties and ease of mass-produced,provides clear potential not only for replacing GCE for various electrochemical studies but also for the development of portable and highperformance electrochemical wearable medical devices.
基金the National Natural Science Foundation of China(82001982 to Q.Z.)The Science and Technology Fund of Guizhou Provincial Health Commission(gzwkj2022-444 to X.Z.)+4 种基金China Postdoctoral Science Foundation(2021M700974 to S.Z.)Guizhou Provincial Natural Science Foundation(ZK[2021]475 to S.Z.)Natural Science Foundation of Education Department of Guizhou Province(KY[2021]176 to S.Z.)Science Foundation of Guizhou Medical University(J[2020]022 and 20NSP057 to S.Z.)College Students Innovation and Entrepreneurship Training Program of Guizhou Province(S202110660052 and S202210660029 to S.Z.).
文摘Triboelectric nanogenerators(TENGs)are considered as an ideal platform for power harvesting for living organisms,thanks to their unique characteristics like flexibility,conversion efficient,and manufacturing cost.Recent advances in TENGs have brought innovative solutions for clinical healthcare.Particularly,TENGs offer novel solutions of continues power supply for wearable and implantable medical devices with lightweight,thinness,good biocompatibility,and excellent soft tissue conformability.In this review,we discuss(1)The working principle and representative structure of TENGs,(2)the material selection of TENGs,(3)the recent progression of application of TENG in the medical field of cardiovascular system,nervous system,respiratory system,microbial inactivation,antibiofouling,disinfection,and tissue repair,(4)challenges and future perspectives of TENG-based medical devices.The emerging TENGs and their applications in medicine cannot simply be seen as an alternative to conventional power supplies,it provides a revolutionary solution for wearable and implantable medical devices,and they will surely change the paradigm of disease diagnosis and treatment in the future.