期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of Non-smooth Surface on Tribological Properties of Glass Fiber-epoxy Resin Composite Sliding against Stainless Steel under Natural Seawater Lubrication 被引量:8
1
作者 WU Shaofeng GAO Dianrong +1 位作者 LIANG Yingna CHEN Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1171-1176,共6页
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat... With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study. 展开更多
关键词 non-smooth surface friction coefficient wear resistance glass fiber-epoxy resin composite seawater lubrication stainless steel 316L
下载PDF
Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying 被引量:6
2
作者 Gang WANG Ping XIAO +1 位作者 Zhong-jia HUANG Ru-jie HE 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第7期699-704,共6页
Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the... Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited under optimized parameters exhibited the lowest porosity of 2.8%.The excellent wear resistance of this coating was attributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed within the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces. 展开更多
关键词 metallic glass high-velocity oxygen fuel Fe-based amorphous coating micro-hardness wear resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部