A series of quality control(QC) procedures were performed on a gauge-based global daily precipitation dataset from the Global Telecommunication System(GTS) for the period 1980-2009.A new global daily precipitation(NGD...A series of quality control(QC) procedures were performed on a gauge-based global daily precipitation dataset from the Global Telecommunication System(GTS) for the period 1980-2009.A new global daily precipitation(NGDP) dataset was constructed by applying those QC procedures to eliminate erroneous records.The NGDP dataset was evaluated using the NOAA Climate Prediction Center Merged Analysis of Precipitation(CMAP) and the Global Precipitation Climatology Project(GPCP) precipitation datasets.The results showed that the frequency distribution and spatial distribution pattern of NGDP had a nice match with those from the CMAP and GPCP datasets.The global mean correlation coefficients with the CMAP and GPCP data increased from 0.24 for original GTS precipitation data to about 0.70 for NGDP data.Correspondingly,the root mean square errors(RMSE) decreased from 12 mm per day to 1 mm per day.The interannual variabilities of NGDP monthly precipitation are consistent with the CMAP and GPCP datasets in Asia.Meanwhile,the seasonal variabilities for most land areas on the Earth of NGDP dataset are also consistent with the CMAP and GPCP precipitation products.展开更多
基金supported by the National Natural Science Foundation(No. 40905046,No.41175066)the National High Technology Research and Development Program(No.2009AA1220005, No.2009BAC51B03)the National Basic Research Program (No.2010CB951902)of China
文摘A series of quality control(QC) procedures were performed on a gauge-based global daily precipitation dataset from the Global Telecommunication System(GTS) for the period 1980-2009.A new global daily precipitation(NGDP) dataset was constructed by applying those QC procedures to eliminate erroneous records.The NGDP dataset was evaluated using the NOAA Climate Prediction Center Merged Analysis of Precipitation(CMAP) and the Global Precipitation Climatology Project(GPCP) precipitation datasets.The results showed that the frequency distribution and spatial distribution pattern of NGDP had a nice match with those from the CMAP and GPCP datasets.The global mean correlation coefficients with the CMAP and GPCP data increased from 0.24 for original GTS precipitation data to about 0.70 for NGDP data.Correspondingly,the root mean square errors(RMSE) decreased from 12 mm per day to 1 mm per day.The interannual variabilities of NGDP monthly precipitation are consistent with the CMAP and GPCP datasets in Asia.Meanwhile,the seasonal variabilities for most land areas on the Earth of NGDP dataset are also consistent with the CMAP and GPCP precipitation products.