期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of the Heavy Rainfall in the Yangtze-Huai River Basin during Summer 2003 Using the WRF Model 被引量:13
1
作者 LIU Hong-Bo 《Atmospheric and Oceanic Science Letters》 2012年第1期20-25,共6页
In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation r... In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period's three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall. 展开更多
关键词 heavy rainfall Yangtze-Huai River Basin the weather research and forecast model low-level jet
下载PDF
Improving the Forecasts of Coastal Wind Speeds in Tianjin,China Based on the WRF Model with Machine Learning Algorithms
2
作者 Weihang ZHANG Meng TIAN +5 位作者 Shangfei HAI Fei WANG Xiadong AN Wanju LI Xiaodong LI Lifang SHENG 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期570-585,共16页
Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the... Characterized by sudden changes in strength,complex influencing factors,and significant impacts,the wind speed in the circum-Bohai Sea area is relatively challenging to forecast.On the western side of Bohai Bay,as the economic center of the circum-Bohai Sea,Tianjin exhibits a high demand for accurate wind forecasting.In this study,three machine learning algorithms were employed and compared as post-processing methods to correct wind speed forecasts by the Weather Research and Forecast(WRF)model for Tianjin.The results showed that the random forest(RF)achieved better performance in improving the forecasts because it substantially reduced the model bias at a lower computing cost,while the support vector machine(SVM)performed slightly worse(especially for stronger winds),but it required an approximately 15 times longer computing time.The back propagation(BP)neural network produced an average forecast significantly closer to the observed forecast but insufficiently reduced the RMSE.In regard to wind speed frequency forecasting,the RF method commendably corrected the forecasts of the frequency of moderate(force 3)wind speeds,while the BP method showed a desirable capability for correcting the forecasts of stronger(force>6)winds.In addition,the 10-m u and v components of wind(u_(10)and v_(10)),2-m relative humidity(RH_(2))and temperature(T_(2)),925-hPa u(u925),sea level pressure(SLP),and 500-hPa temperature(T_(500))were identified as the main factors leading to bias in wind speed forecasting by the WRF model in Tianjin,indicating the importance of local dynamical/thermodynamic processes in regulating the wind speed.This study demonstrates that the combination of numerical models and machine learning techniques has important implications for refined local wind forecasting. 展开更多
关键词 machine learning weather research and forecast(WRF)model wind speed forecasting coastal region
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部