期刊文献+
共找到64,874篇文章
< 1 2 250 >
每页显示 20 50 100
Droplet Self-Driven Characteristics on Wedge-Shaped Surface with Composite Gradients:A Molecular Dynamics Study
1
作者 Haowei Hu Xinnuo Chen +3 位作者 Qi Wang Qin Li Dong Niu Mu Du 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1071-1085,共15页
The self-driven behavior of droplets on a functionalized surface,coupled with wetting gradient and wedge patterns,is systematically investigated using molecular dynamics(MD)simulations.The effects of key factors,inclu... The self-driven behavior of droplets on a functionalized surface,coupled with wetting gradient and wedge patterns,is systematically investigated using molecular dynamics(MD)simulations.The effects of key factors,including wedge angle,wettability,and wetting gradient,on the droplet self-driving effect is revealed from the nanoscale.Results indicate that the maximum velocity of droplets on hydrophobic wedge-shaped surfaces increases with the wedge angle,accompanied by a rapid attenuation of driving force;however,the average velocity decreases with the increased wedge angle.Conversely,droplet movement on hydrophilic wedge-shaped surfaces follows the opposite trend,particularly in terms of average velocity compared to the hydrophobic case.Both wedge-shaped and composite gradient wedge-shaped surfaces are found to induce droplet motion,with droplets exhibiting higher speeds and distances on hydrophobic surfaces compared to hydrophilic surfaces,regardless of surface type.Importantly,the inclusion of wettability gradients significantly influences droplet motion,with hydrophobic composite gradient wedge-shaped surfaces showing considerable improvements in droplet speed and distance compared to their hydrophilic counterparts.By combining suitable wettability gradients with wedge-shaped surfaces,the limitations inherent in the wettability gradient range and wedge-shaped configuration can be mitigated,thereby enhancing droplet speed and distance.The findings presented in this paper offer valuable insights for the design of advanced functional surfaces tailored for manipulating droplets in real-world applications. 展开更多
关键词 Self-driven wettability gradient wedge-shaped surface composite gradient
下载PDF
Steel Surface Defect Recognition in Smart Manufacturing Using Deep Ensemble Transfer Learning-Based Techniques
2
作者 Tajmal Hussain Jongwon Seok 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期231-250,共20页
Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re... Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology. 展开更多
关键词 Smart manufacturing CNN steel defects ensemble models
下载PDF
Optimizing electronic structure through point defect engineering for enhanced electrocatalytic energy conversion
3
作者 Wei Ma Jiahao Yao +6 位作者 Fang Xie Xinqi Wang Hao Wan Xiangjian Shen Lili Zhang Menggai Jiao Zhen Zhou 《Green Energy & Environment》 SCIE EI CAS 2025年第1期109-131,共23页
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e... Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials. 展开更多
关键词 Point defect engineering DOPING VACANCY ELECTROCATALYSIS Electronic structure
下载PDF
Defect Engineering with Rational Dopants Modulation for High‑Temperature Energy Harvesting in Lead‑Free Piezoceramics
4
作者 Kaibiao Xi Jianzhe Guo +2 位作者 Mupeng Zheng Mankang Zhu Yudong Hou 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期87-101,共15页
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu... High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments. 展开更多
关键词 Lead-free piezoceramic defect engineering Dopants modulation High-temperature Piezoelectric energy harvester
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
5
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic defect engineering Cathode materials Ion migration
下载PDF
Distribution and engulfment behavior of TiB_2 particles or clusters in wedge-shaped copper casting ingot 被引量:1
6
作者 孙靖 张晓波 +3 位作者 蔡庆 张亦杰 马乃恒 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期54-60,共7页
Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The... Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions. 展开更多
关键词 discontinuously reinforced aluminum matrix composites Ti B2 wedge-shaped copper mold casting particle distribution particle engulfment
下载PDF
The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals 被引量:6
7
作者 姜丽娟 刘官厅 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期245-251,共7页
Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal ... Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones. 展开更多
关键词 one-dimensional hexagonal piezoelectric quasicrystals dislocation wedge-shaped crack interac-tion
下载PDF
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:3
8
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics defect states
下载PDF
Numerical prediction of thermo-hydrodynamics on the gas-lubricated film in wedge-shaped microchannel
9
作者 ZHANG Xueqing ZHANG Yangang +1 位作者 CHEN Qinghua LIU Juanfang 《排灌机械工程学报》 EI CSCD 北大核心 2019年第8期692-698,共7页
One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopt... One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopted to mainly analyze the lubrication hydrodynamics of the gas film,as the horizontal plate was viewed as the adiabatic wall or the horizontal plate temperature was equal to the tilt plate temperature.A higher gas film temperature strengthened the rarefaction effect,and the more rarefied gas weakened the squeeze.Meanwhile,the vertical flow across the gas film could indicate the relation between the velocity vector and the gas film squeeze and expansion.The adiabatic horizontal plate could resist the heat conduction and enhance the rarefaction effect,and thus the direction of motion of the gas molecules was easier to be changed. 展开更多
关键词 thermo-hyrodynamics Navier-Stokes equations adiabatic horizontal plate wedge-shaped gas-lubricated FILM
下载PDF
Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential
10
作者 Yun-Cheng Liao Bin Liu +1 位作者 Juan Liu Jia Chen 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期24-27,共4页
We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicqui... We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicquintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams. 展开更多
关键词 Dissipative Solitons COMPLEX GINZBURG-LANDAU Equations ASYMMETRIC wedge-shaped POTENTIAL
下载PDF
Design of a Wedge-Shaped Toroidal Field Winding for KTX Device
11
作者 郑金星 宋云涛 +4 位作者 杨庆喜 刘万东 丁卫星 刘旭峰 杨雷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第9期878-884,共7页
The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor ra... The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor radius is 0.55 m. One of the most important problems in the magnet system design is how to reduce the TF magnetic field ripple and error field. A new wedge- shaped TF coil is put forward for the KTX device and its electromagnetic properties are compared with those of rectangular-shaped TF coils. The error field B,I/Bt of wedge-shaped TF coils with 6.4 degrees is about 6% as compared with 8% in the case of a rectangular-shaped TF coil. Besides, the wedge-shaped TF coils have a lower magnetic field ripple at the edge of the plasma region, which is smaller than 7.5% at R=1.83 m and 2% at R=l.07 m. This means that the tokamak operation mode may be feasible for this device when the plasma area becomes smaller, because the maximum ripple in the plasma area of the tokamak model is always required to be smaller than 0.4%. Detailed analysis of the results shows that the structure of the wedged-shape TF coil is reliable. It can serve as a reference for TF coil design of small aspect ratio RFPs or similar torus devices. 展开更多
关键词 KTX toroidal field winding wedge-shaped winding MAGNET
下载PDF
Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles 被引量:1
12
作者 Zhongqing Zhang Bo Wan +4 位作者 Guicui Fu Yutai Su Zhaoxi Wu Xiangfen Wang Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期441-458,共18页
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t... Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs. 展开更多
关键词 Sintered silver nanoparticles defect types microscopic defect evolution macroscopic crack propagation molecular dynamics simulation cohesive zone model
下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:2
13
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)_(2) for Electrocatalytic Urea Oxidation 被引量:1
14
作者 Yi Liu Zhihui Yang +2 位作者 Yuqin Zou Shuangyin Wang Junying He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期111-118,共8页
Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by ... Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy. 展开更多
关键词 defect engineering ELECTROCATALYSIS small molecule oxidation
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
15
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
A Hybrid Deep Learning and Machine Learning-Based Approach to Classify Defects in Hot Rolled Steel Strips for Smart Manufacturing 被引量:1
16
作者 Tajmal Hussain Jungpyo Hong Jongwon Seok 《Computers, Materials & Continua》 SCIE EI 2024年第8期2099-2119,共21页
Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an i... Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies. 展开更多
关键词 Smart manufacturing steel defect detection deep learning CNN
下载PDF
SAM Era:Can It Segment Any Industrial Surface Defects? 被引量:1
17
作者 Kechen Song Wenqi Cui +2 位作者 Han Yu Xingjie Li Yunhui Yan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3953-3969,共17页
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige... Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS. 展开更多
关键词 Segment anything SAM surface defect detection salient object detection
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting 被引量:1
18
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
19
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
3D reconstruction and defect pattern recognition of bonding wire based on stereo vision 被引量:1
20
作者 Naigong Yu Hongzheng Li +2 位作者 Qiao Xu Ouattara Sie Essaf Firdaous 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期348-364,共17页
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim... Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection. 展开更多
关键词 bonding wire defect detection point cloud point cloud segmentation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部