Aims Understanding the response of farmland weed community assembly to fertilization is important for designing better nutrient management strategies in integrated farmland ecological systems.Many studies have focused...Aims Understanding the response of farmland weed community assembly to fertilization is important for designing better nutrient management strategies in integrated farmland ecological systems.Many studies have focused on weed characteristics,mainly crop–weed competition responses to fertilization or weed communities alone.However,weed community assembly in association with crop growth is poorly understood in the agroecosystems,but is important for the determination of integrated weed management.Biodiversity promotes ecosystem productivity in the grassland,but whether it applies to the agroecosystems is unclear.Based on an 11-year field experiment,the cumulative effects of different fertilization patterns on the floristic composition and species diversity of farmland weed communities along with wheat growth in a winter wheat–soybean rotation were investigated.Methods The field trial included five fertilization patterns with different combinations of N,P and K fertilizers.Species composition and diversity of weed communities,aboveground plant biomass and nutrient accumulation of weeds and winter wheat,light penetration to the ground surface and wheat yield were measured at each plot in 2009 and 2010.Multivariate analysis,regression and analysis of variance were used to analyze the responses of these parameters to the different fertilization treatments.Important Findings Four dominant weeds(Galium aparine L.,Veronica persica Poir.,Vicia sativa L.and Geranium carolinianum L.)accounted for~90%of the total weed density in the 2 years of experimental duration.The residual weed community assembly was influenced primarily by topsoil available nutrients in the order P>N>K.Competition for nutrients and solar radiation between crops and weeds was the main indirect effect of fertilization on the changes in weed community composition and species diversity.The indices of species diversity(species richness,Shannon–Wiener,Pielou and Simpson indices)showed significant linear relationships with wheat yield.The balanced fertilization treatment was more efficient at inhibiting the potential growth of weeds because of solar radiation being intercepted by wheat.These results support the conclusion that wheat yield is favored by balanced fertilization,whereas the weed community is favored by PK fertilization in terms of density and diversity.However,the negative effects on wheat yield may be compromised by simultaneous positive effects of weed communities in the fertilization treatments,for instance,the NP and NK treatments,which are intermediate in terms of increasing wheat production and to a level maintaining a diverse community.展开更多
Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crop...Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerum, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu- ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui Province; Alopecurus aequalis Sobol. was the dominant weed in this group. Other main weeds in this group included Malachium aquaticum (L.) Fries, Stellaria alsine Grimm, Alopecurusjaponicus Steud., and Lapsana apogonoides Maxim. Thus, the weed community distributions in this group were described as the Alopecurus weed vegetation type. The paddy soil group could be divided into two subgroups, one southern and one central paddy soil subgroup. A strategy for integrated weed management is suggested according to the weed distribution pattern. The present study serves as a good example of how a quantitative research method was used to associate a visual estimate of weed infestation with multivariate analyses, such as PCA and CCA, and how this method can be applied to the study of weed vegetation on arable land.展开更多
基金China Program of International Plant Nutrition Institute(IPNI-HB-34)the Opening Project of Hubei Key Laboratory of Wetland Evolution&Ecological Restoration(2011-02).
文摘Aims Understanding the response of farmland weed community assembly to fertilization is important for designing better nutrient management strategies in integrated farmland ecological systems.Many studies have focused on weed characteristics,mainly crop–weed competition responses to fertilization or weed communities alone.However,weed community assembly in association with crop growth is poorly understood in the agroecosystems,but is important for the determination of integrated weed management.Biodiversity promotes ecosystem productivity in the grassland,but whether it applies to the agroecosystems is unclear.Based on an 11-year field experiment,the cumulative effects of different fertilization patterns on the floristic composition and species diversity of farmland weed communities along with wheat growth in a winter wheat–soybean rotation were investigated.Methods The field trial included five fertilization patterns with different combinations of N,P and K fertilizers.Species composition and diversity of weed communities,aboveground plant biomass and nutrient accumulation of weeds and winter wheat,light penetration to the ground surface and wheat yield were measured at each plot in 2009 and 2010.Multivariate analysis,regression and analysis of variance were used to analyze the responses of these parameters to the different fertilization treatments.Important Findings Four dominant weeds(Galium aparine L.,Veronica persica Poir.,Vicia sativa L.and Geranium carolinianum L.)accounted for~90%of the total weed density in the 2 years of experimental duration.The residual weed community assembly was influenced primarily by topsoil available nutrients in the order P>N>K.Competition for nutrients and solar radiation between crops and weeds was the main indirect effect of fertilization on the changes in weed community composition and species diversity.The indices of species diversity(species richness,Shannon–Wiener,Pielou and Simpson indices)showed significant linear relationships with wheat yield.The balanced fertilization treatment was more efficient at inhibiting the potential growth of weeds because of solar radiation being intercepted by wheat.These results support the conclusion that wheat yield is favored by balanced fertilization,whereas the weed community is favored by PK fertilization in terms of density and diversity.However,the negative effects on wheat yield may be compromised by simultaneous positive effects of weed communities in the fertilization treatments,for instance,the NP and NK treatments,which are intermediate in terms of increasing wheat production and to a level maintaining a diverse community.
文摘Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerum, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu- ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui Province; Alopecurus aequalis Sobol. was the dominant weed in this group. Other main weeds in this group included Malachium aquaticum (L.) Fries, Stellaria alsine Grimm, Alopecurusjaponicus Steud., and Lapsana apogonoides Maxim. Thus, the weed community distributions in this group were described as the Alopecurus weed vegetation type. The paddy soil group could be divided into two subgroups, one southern and one central paddy soil subgroup. A strategy for integrated weed management is suggested according to the weed distribution pattern. The present study serves as a good example of how a quantitative research method was used to associate a visual estimate of weed infestation with multivariate analyses, such as PCA and CCA, and how this method can be applied to the study of weed vegetation on arable land.