Giant ragweed (Ambrosia trifida L.) is competitive with agronomic crops and can cause significant yield losses. Rapid adoption of glyphosate-resistant (GR) crops and a concomitant increase in the reliance on glyphosat...Giant ragweed (Ambrosia trifida L.) is competitive with agronomic crops and can cause significant yield losses. Rapid adoption of glyphosate-resistant (GR) crops and a concomitant increase in the reliance on glyphosate for weed management has led to the evolution of GR giant ragweed in Ontario, Canada. Field studies were conducted to evaluate the level of resistance in giant ragweed biotypes from Ontario, and to evaluate the effectiveness of various postemer-gence (POST) herbicides in soybean (Glycine max L.). The effective dose (ED) to provide 50%, 80% and 95% giant ragweed control was up to 1658, 9991 and >43200 g?a.e.?ha–1 4 weeks after application (WAA), respectively. For effective control, growers would need to apply glyphosate 18 times greater than the recommended field application dose. Glyphosate applied at the recommended field dose of 900 g?a.e.?ha–1 provided up to 57% control and resulted in soybean yield equivalent to the weedy check. Cloransulam-methyl applied POST provided up to 99% control, reduced giant ragweed density 98%, reduced giant ragweed shoot dry weight 99% and resulted in soybean yield equivalent to the weedfree check. Chlorimuron-ethyl, fomesafen, imazethapyr and imazethapyr plus bentazon applied alone or with glyphosate did not provide adequate control of GR giant ragweed. Based on these results, some GR giant ragweed biotypes from Ontario have evolved a high level of resistance to glyphosate. Cloransulam-methyl applied POST was the only herbicide that provided adequate control and suggests that additional weed management tactics will need to be implemented in order to effectively manage GR giant ragweed.展开更多
The use of glyphosate-resistant corn has facilitated a shift from a reliance on preemergence residual herbicides to postemergence (POST) herbicides, and in some cases exclusively glyphosate. Glyphosate is a non-select...The use of glyphosate-resistant corn has facilitated a shift from a reliance on preemergence residual herbicides to postemergence (POST) herbicides, and in some cases exclusively glyphosate. Glyphosate is a non-selective herbicide that is relatively slow-acting, which may allow weeds to continue to compete with corn after application and potentially decrease crop yield. The addition of several POST corn herbicides, with some residual control, to an early-season glyphosate application was examined to determine if the tankmix combination would improve the speed of weed control compared to glyphosate applied alone. Seven field trials were conducted over three years (2009, 2010 and 2011) near Ridgetown and Exeter, Ontario. The control of common ragweed was improved 3 days after application (DAA) with three POST glyphosate tankmixes compared to glyphosate alone. However control was still less than 55%. Depending on the weed species examined, at 28 DAA two of the glyphosate tankmix treatments tested provided better common ragweed, common lambsquarters, or green foxtail control than glyphosate alone. Treatments providing better weed control at 28 DAA also typically decreased weed density compared to glyphosate alone.展开更多
The System of Rice Intensification (SRI) has been attributed to improvement in rice production with various attributes being accrued from application of the SRI Principles. The most notable are savings on water use an...The System of Rice Intensification (SRI) has been attributed to improvement in rice production with various attributes being accrued from application of the SRI Principles. The most notable are savings on water use and increase in yield. Alternate Wetting and Drying (AWD) has also paved way for mechanical weed control in paddy fields. One of the major constraints to adoption of SRI is the perceived increased labour input due to the careful transplanting and frequent weed control. This paper evaluates the effect of mechanization on labour input in SRI in comparison to the less mechanized farmer practice. In attempt to reduce drudgery in transplanting under SRI, the drum seeder was used to establish the rice crop by direct seeding. This was then followed by using SRI practices i.e. AWD and mechanical weeding. Direct seeding using a drum seeder was compared to transplanting in both SRI and the common farmer practice. Hand weeding was also evaluated and compared to mechanical weeding. Labour input cost was also compared to the income accrued from the yields. From the study, it was noted that direct seeding using the drum seeder reduced labour input by 97% compared to transplanting. This was possible in that in direct seeding, and there was no nursery preparation and management as in transplanting. The use of a mechanical weeder reduced labour input by 28.3% in relation to hand weeding. Labour input cost for SRI was cheaper (Kshs. 124,080 per hectare) compared to the common farmer practice (Kshs. 139,117.50 per hectare). There was more yield from the SRI practice (2.75 Ton/ha) compared to the common farmer practice (1.88 Ton/ha).展开更多
It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical...It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical control of quackgrass represents an interesting alternative to chemical means. The use of a "C" shaped mounted tine cultivator, a rotary cross-harrow, and an "S" shaped trailed tine cultivator (alone or in combination) to control quackgrass in grassland was investigated. The rate of quackgrass present in each experimental plot was determined before and after the treatments using a one square meter quadrant. Also, the time required for each passage as well as the fuel consumption were computed. Results revealed that the fuel consumption and the time required by the "C" and "S" shaped tine cultivators to transport and expose the rhizomes to the sun on the soil surface highly depend on the quality of tillage during the first stubble passage. Also, subsequent tillage with the "C" shaped tine cultivator after a first passage with a rotary cross-harrow resulted in less fuel consumption and passage time. On the other hand, stubble and subsequent soil tillage with only the "C" shaped tine cultivator is the least successful method.展开更多
Field studies were conducted in 2012 and 2013 to evaluate weed and insect control efficacy with glyphosate at 1 230 g ai(active ingredient) ha^(-1) and the insecticides acephate(728 g ai ha^(-1)),carbosulfan(...Field studies were conducted in 2012 and 2013 to evaluate weed and insect control efficacy with glyphosate at 1 230 g ai(active ingredient) ha^(-1) and the insecticides acephate(728 g ai ha^(-1)),carbosulfan(135 g ai ha^(-1)),endosulfan(683 g ai ha^(-1)),imidacloprid(32 g ai ha^(-1)),or lambda-cyhalothrin(23 g ai ha^(-1)),as well as glyphosate tank-mixed with these insecticides.Four of the most common weeds in cotton,common purslane,false daisy,goosegrass,and lambsquarters,were manually sown in the cotton field and treated with glyphosate alone or in combination with insecticides.Glyphosate efficacy,based on visual estimates of control and weed fresh weight at 21 d after treatment(DAT),was unaffected by the addition of insecticides.Four weeds were controlled by 93-97%and 86-100%(visual rating) and reduced weed fresh biomass by98-99%and 96-100%with glyphosate alone and its combination with insecticides,respectively.Addition of glyphosate to acephate improved cotton aphid control compared with acephate alone.However,addition of glyphosate to carbosulfan,endosulfan,imidacloprid,or lambda-cyhalothrin did not affect the aphid control when compared with the insecticide alone treatments.These results indicate that cotton producers could potentially integrate weed and insect management strategies by choosing suitable insecticide mixing partners with glyphosate,thereby reducing the application costs without sacrificing the efficacy of the glyphosate or the insecticides.展开更多
基金Funding for this project was provided in part by Monsanto Canada Inc.,the Grain Farmers of Ontario and the Agricultural Adaptation Council through the Canadian Agricultural Adaptation Program.
文摘Giant ragweed (Ambrosia trifida L.) is competitive with agronomic crops and can cause significant yield losses. Rapid adoption of glyphosate-resistant (GR) crops and a concomitant increase in the reliance on glyphosate for weed management has led to the evolution of GR giant ragweed in Ontario, Canada. Field studies were conducted to evaluate the level of resistance in giant ragweed biotypes from Ontario, and to evaluate the effectiveness of various postemer-gence (POST) herbicides in soybean (Glycine max L.). The effective dose (ED) to provide 50%, 80% and 95% giant ragweed control was up to 1658, 9991 and >43200 g?a.e.?ha–1 4 weeks after application (WAA), respectively. For effective control, growers would need to apply glyphosate 18 times greater than the recommended field application dose. Glyphosate applied at the recommended field dose of 900 g?a.e.?ha–1 provided up to 57% control and resulted in soybean yield equivalent to the weedy check. Cloransulam-methyl applied POST provided up to 99% control, reduced giant ragweed density 98%, reduced giant ragweed shoot dry weight 99% and resulted in soybean yield equivalent to the weedfree check. Chlorimuron-ethyl, fomesafen, imazethapyr and imazethapyr plus bentazon applied alone or with glyphosate did not provide adequate control of GR giant ragweed. Based on these results, some GR giant ragweed biotypes from Ontario have evolved a high level of resistance to glyphosate. Cloransulam-methyl applied POST was the only herbicide that provided adequate control and suggests that additional weed management tactics will need to be implemented in order to effectively manage GR giant ragweed.
文摘The use of glyphosate-resistant corn has facilitated a shift from a reliance on preemergence residual herbicides to postemergence (POST) herbicides, and in some cases exclusively glyphosate. Glyphosate is a non-selective herbicide that is relatively slow-acting, which may allow weeds to continue to compete with corn after application and potentially decrease crop yield. The addition of several POST corn herbicides, with some residual control, to an early-season glyphosate application was examined to determine if the tankmix combination would improve the speed of weed control compared to glyphosate applied alone. Seven field trials were conducted over three years (2009, 2010 and 2011) near Ridgetown and Exeter, Ontario. The control of common ragweed was improved 3 days after application (DAA) with three POST glyphosate tankmixes compared to glyphosate alone. However control was still less than 55%. Depending on the weed species examined, at 28 DAA two of the glyphosate tankmix treatments tested provided better common ragweed, common lambsquarters, or green foxtail control than glyphosate alone. Treatments providing better weed control at 28 DAA also typically decreased weed density compared to glyphosate alone.
文摘The System of Rice Intensification (SRI) has been attributed to improvement in rice production with various attributes being accrued from application of the SRI Principles. The most notable are savings on water use and increase in yield. Alternate Wetting and Drying (AWD) has also paved way for mechanical weed control in paddy fields. One of the major constraints to adoption of SRI is the perceived increased labour input due to the careful transplanting and frequent weed control. This paper evaluates the effect of mechanization on labour input in SRI in comparison to the less mechanized farmer practice. In attempt to reduce drudgery in transplanting under SRI, the drum seeder was used to establish the rice crop by direct seeding. This was then followed by using SRI practices i.e. AWD and mechanical weeding. Direct seeding using a drum seeder was compared to transplanting in both SRI and the common farmer practice. Hand weeding was also evaluated and compared to mechanical weeding. Labour input cost was also compared to the income accrued from the yields. From the study, it was noted that direct seeding using the drum seeder reduced labour input by 97% compared to transplanting. This was possible in that in direct seeding, and there was no nursery preparation and management as in transplanting. The use of a mechanical weeder reduced labour input by 28.3% in relation to hand weeding. Labour input cost for SRI was cheaper (Kshs. 124,080 per hectare) compared to the common farmer practice (Kshs. 139,117.50 per hectare). There was more yield from the SRI practice (2.75 Ton/ha) compared to the common farmer practice (1.88 Ton/ha).
文摘It is well known that quackgrass is both very aggressive and persistent. In agriculture, many attempts have been made to eliminate this weed without success. Within the context of a sustainable agriculture, mechanical control of quackgrass represents an interesting alternative to chemical means. The use of a "C" shaped mounted tine cultivator, a rotary cross-harrow, and an "S" shaped trailed tine cultivator (alone or in combination) to control quackgrass in grassland was investigated. The rate of quackgrass present in each experimental plot was determined before and after the treatments using a one square meter quadrant. Also, the time required for each passage as well as the fuel consumption were computed. Results revealed that the fuel consumption and the time required by the "C" and "S" shaped tine cultivators to transport and expose the rhizomes to the sun on the soil surface highly depend on the quality of tillage during the first stubble passage. Also, subsequent tillage with the "C" shaped tine cultivator after a first passage with a rotary cross-harrow resulted in less fuel consumption and passage time. On the other hand, stubble and subsequent soil tillage with only the "C" shaped tine cultivator is the least successful method.
基金provided by the Fundamental Research Funds for Central Public Welfare Research Institutes,China(SJB1202)
文摘Field studies were conducted in 2012 and 2013 to evaluate weed and insect control efficacy with glyphosate at 1 230 g ai(active ingredient) ha^(-1) and the insecticides acephate(728 g ai ha^(-1)),carbosulfan(135 g ai ha^(-1)),endosulfan(683 g ai ha^(-1)),imidacloprid(32 g ai ha^(-1)),or lambda-cyhalothrin(23 g ai ha^(-1)),as well as glyphosate tank-mixed with these insecticides.Four of the most common weeds in cotton,common purslane,false daisy,goosegrass,and lambsquarters,were manually sown in the cotton field and treated with glyphosate alone or in combination with insecticides.Glyphosate efficacy,based on visual estimates of control and weed fresh weight at 21 d after treatment(DAT),was unaffected by the addition of insecticides.Four weeds were controlled by 93-97%and 86-100%(visual rating) and reduced weed fresh biomass by98-99%and 96-100%with glyphosate alone and its combination with insecticides,respectively.Addition of glyphosate to acephate improved cotton aphid control compared with acephate alone.However,addition of glyphosate to carbosulfan,endosulfan,imidacloprid,or lambda-cyhalothrin did not affect the aphid control when compared with the insecticide alone treatments.These results indicate that cotton producers could potentially integrate weed and insect management strategies by choosing suitable insecticide mixing partners with glyphosate,thereby reducing the application costs without sacrificing the efficacy of the glyphosate or the insecticides.