In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted esti...In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted estimates for this new operator, the authors prove that, if p_1 ∈ (1,∞), p_2,…,p_m ∈(1,∞], p ∈ (0,∞) with 1/p =Σ1≤k≤ m 1/pk, then for any weight w, the commutators of m-linear Galderón-Zygmund operator are bounded from L P1(R n,M_l(logL) σw)× p2(Rn,M~w)×...×Lpm(Rn,Mw) to Lp(Rn,w)with σ to be a constant depending only on p_1 and the order of commutator展开更多
In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions dependin...In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions depending on ε, when ε→ 0. It is introduced a general concept of Pade approximant and we study its relation with the best local quasi-rational approximant. We characterize the limit of the error for polynomial approximation. We also obtain a new condition over a weight function in order to obtain inequalities in Lp norm, which play an important role in problems of weighted best local Lp approximation in several variables.展开更多
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl...As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.展开更多
The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral...The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.展开更多
We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove ...We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property.展开更多
In this paper, we propose an interactive method for the multiobjec-tive decision making problem. It can produce a quality solution of a decision mak-er(DM) by using the Tchebycheff norm. At each interactive step, it o...In this paper, we propose an interactive method for the multiobjec-tive decision making problem. It can produce a quality solution of a decision mak-er(DM) by using the Tchebycheff norm. At each interactive step, it only requiresthe DM make some index spe展开更多
Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image ...Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image regularization methods.In recent years,matrix low-rank approximation has been successfully introduced in the image denoising problem and significant denoising effects have been achieved.Low-rank matrix minimization is an NP-hard problem and it is often replaced with the matrix’s weighted nuclear norm minimization(WNNM).The assumption that an image contains an extensive amount of self-similarity is the basis for the construction of the matrix low-rank approximation-based image denoising method.In this paper,we develop a model for image restoration using the sum of block matching matrices’weighted nuclear norm to be the regularization term in the cost function.An alternating iterative algorithm is designed to solve the proposed model and the convergence analyses of the algorithm are also presented.Numerical experiments show that the proposed method can recover the images much better than the existing regularization methods in terms of both recovered quantities and visual qualities.展开更多
In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball i...In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball in terms of these counting functions. The sufficient condition for such operators to be bounded or compact is also given.展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^...The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights.展开更多
Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the ...Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the regularities of the weighting factors,a method is proposed and the vertical and horizontal weighting filters are developed.The whole frequency range is divided several times into two parts with respective regularity.For each division,a parallel filter constituted by a low-and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors.The cascading of these parallel filters obtains entire factors.These filters own a high order.But,low order filters are preferred in some applications.The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard.In addition,with the window method,the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting.For the same case,the traditional method produces 0.330 7 m · s^–2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m · s^–2 r.m.s.The fourth order filter for approximation of vertical weighting obtains 0.313 9 m · s^–2 r.m.s.Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1,respectively.This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation,and these developed weighting filters are effective.展开更多
In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generate...In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generated by the operators of singular integration and multiplication by function. For the considered operators, we obtained more precise relations between norms of integral operators with local singularities in weighted Lebesgue spaces and norms in weighted Hölder spaces, making use of previously obtained general results. We prove the boundedness of operators with linear fractional singularities.展开更多
It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire ...It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.展开更多
Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequali...Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.展开更多
基金This research was supported by the NSFC (10971228).
文摘In this paper, the authors consider the weighted estimates for the commutators of multilinear Calderón-Zygmund operators.By introducing an operator which shifts the commutation, and establishing the weighted estimates for this new operator, the authors prove that, if p_1 ∈ (1,∞), p_2,…,p_m ∈(1,∞], p ∈ (0,∞) with 1/p =Σ1≤k≤ m 1/pk, then for any weight w, the commutators of m-linear Galderón-Zygmund operator are bounded from L P1(R n,M_l(logL) σw)× p2(Rn,M~w)×...×Lpm(Rn,Mw) to Lp(Rn,w)with σ to be a constant depending only on p_1 and the order of commutator
基金This work is supported by Universidad Nacional de Rio Cuarto.
文摘In this paper we establish a result about uniformly equivalent norms and the convergence of best approximant pairs on the unitary ball for a family of weighted Luxemburg norms with normalized weight functions depending on ε, when ε→ 0. It is introduced a general concept of Pade approximant and we study its relation with the best local quasi-rational approximant. We characterize the limit of the error for polynomial approximation. We also obtain a new condition over a weight function in order to obtain inequalities in Lp norm, which play an important role in problems of weighted best local Lp approximation in several variables.
基金supported by the National Natural Science Foundation of China(6140130861572063)+7 种基金the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Science and Technology Support Project of Hebei Province(15210409)the Natural Science Foundation of Hebei University(2014-303)the National Comprehensive Ability Promotion Project of Western and Central China
文摘As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.
基金Foundation item:the Education Commission of Shandong Province(J98P51)
文摘The theta (t)-type oscillatory singular integral operators has been discussed. With the non-negative locally integrable weighted function, the weighted norm inequality of theta ( t) -type oscillatory singular integral operators is proved, and the weighted function has replaced by action of Hardy-Littlewood maximal operators several times.
文摘We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property.
文摘In this paper, we propose an interactive method for the multiobjec-tive decision making problem. It can produce a quality solution of a decision mak-er(DM) by using the Tchebycheff norm. At each interactive step, it only requiresthe DM make some index spe
基金This work is supported by the National Natural Science Foundation of China nos.11971215 and 11571156,MOE-LCSMSchool of Mathematics and Statistics,Hunan Normal University,Changsha,Hunan 410081,China.
文摘Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image regularization methods.In recent years,matrix low-rank approximation has been successfully introduced in the image denoising problem and significant denoising effects have been achieved.Low-rank matrix minimization is an NP-hard problem and it is often replaced with the matrix’s weighted nuclear norm minimization(WNNM).The assumption that an image contains an extensive amount of self-similarity is the basis for the construction of the matrix low-rank approximation-based image denoising method.In this paper,we develop a model for image restoration using the sum of block matching matrices’weighted nuclear norm to be the regularization term in the cost function.An alternating iterative algorithm is designed to solve the proposed model and the convergence analyses of the algorithm are also presented.Numerical experiments show that the proposed method can recover the images much better than the existing regularization methods in terms of both recovered quantities and visual qualities.
基金supported by the National Natural Science Foundation of China (11171255,11101279)the Natural Science Foundation of Shanghai (13ZR1444100)
文摘In this paper, we define the generalized counting functions in the higher dimensional case and give an upper bound of the essential norms of composition operators between the weighted Bergman spaces on the unit ball in terms of these counting functions. The sufficient condition for such operators to be bounded or compact is also given.
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金Supported by the National Natural Science Foundation of China (1067114711071190)
文摘The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights.
文摘Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the regularities of the weighting factors,a method is proposed and the vertical and horizontal weighting filters are developed.The whole frequency range is divided several times into two parts with respective regularity.For each division,a parallel filter constituted by a low-and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors.The cascading of these parallel filters obtains entire factors.These filters own a high order.But,low order filters are preferred in some applications.The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard.In addition,with the window method,the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting.For the same case,the traditional method produces 0.330 7 m · s^–2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m · s^–2 r.m.s.The fourth order filter for approximation of vertical weighting obtains 0.313 9 m · s^–2 r.m.s.Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1,respectively.This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation,and these developed weighting filters are effective.
文摘In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generated by the operators of singular integration and multiplication by function. For the considered operators, we obtained more precise relations between norms of integral operators with local singularities in weighted Lebesgue spaces and norms in weighted Hölder spaces, making use of previously obtained general results. We prove the boundedness of operators with linear fractional singularities.
基金support of financing from the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO K–201
文摘It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.
基金Supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012429)Guangzhou Huashang College Research Team Project(Grant No.2021HSKT03)。
文摘Using the weight coefficient method, we first discuss semi-discrete Hilbert-type inequalities, and then discuss boundedness of integral and discrete operators and operator norm estimates based on Hilbert-type inequalities in weighted Lebesgue space and weighted normed sequence space.