期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stress Relaxation and Sensitivity Weight for Bi-Directional Evolutionary Structural Optimization to Improve the Computational Efficiency and Stabilization on Stress-Based Topology Optimization 被引量:2
1
作者 Chao Ma Yunkai Gao +1 位作者 Yuexing Duan Zhe Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期715-738,共24页
Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimi... Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes. 展开更多
关键词 Stress-based topology optimization aggregation function stress relaxation sensitivity weight bi-directional evolutionary structural optimization
下载PDF
Light weight analysis of a skeleton vehicle frame using BS960 super-high-strength steel 被引量:1
2
作者 HAO Xin WANG Yong CAI Zheng 《Baosteel Technical Research》 CAS 2016年第2期40-44,共5页
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit... Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%. 展开更多
关键词 skeleton vehicle frame finite element analysis dynamic sensitivity analysis BS960 super-high-strength beam steel light weight
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部