To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the ...The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.展开更多
In the context of the continuous development of the Internet,crowdsourcing has received continuous attention as a new cooperation model based on the relationship between enterprises,the public and society.Among them,a...In the context of the continuous development of the Internet,crowdsourcing has received continuous attention as a new cooperation model based on the relationship between enterprises,the public and society.Among them,a reasonably designed recommendation algorithm can recommend a batch of suitable workers for crowdsourcing tasks to improve the final task completion quality.Therefore,this paper proposes a crowdsourcing recommendation framework based on workers’influence(CRBI).This crowdsourcing framework completes the entire process design from task distribution,worker recommendation,and result return through processes such as worker behavior analysis,task characteristics construction,and cost optimization.In this paper,a calculation model of workers’influence characteristics based on the ablation method is designed to evaluate the comprehensive performance of workers.At the same time,the CRBI framework combines the traditional open-call task selection mode,builds a new task characteristics model by sensing the influence of the requesting worker and its task performance.In the end,accurate worker recommendation and task cost optimization are carried out by calculating model familiarity.In addition,for recommending workers to submit task answers,this paper also proposes an aggregation algorithm based on weighted influence to ensure the accuracy of task results.This paper conducts simulation experiments on some public datasets of AMT,and the experimental results show that the CRBI framework proposed in this paper has a high comprehensive performance.Moreover,CRBI has better usability,more in line with commercial needs,and can well reflect the wisdom of group intelligence.展开更多
Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicato...Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicators of PD,making voice analysis a valuable tool for early detection and intervention.This study aims to assess and detect the severity of PD through voice analysis using the mobile device voice recordings dataset.The dataset consisted of recordings from PD patients at different stages of the disease and healthy control subjects.A novel approach was employed,incorporating a voice activity detection algorithm for speech segmentation and the wavelet scattering transform for feature extraction.A Bayesian optimization technique is used to fine-tune the hyperparameters of seven commonly used classifiers and optimize the performance of machine learning classifiers for PD severity detection.AdaBoost and K-nearest neighbor consistently demonstrated superior performance across various evaluation metrics among the classifiers.Furthermore,a weighted majority voting(WMV)technique is implemented,leveraging the predictions of multiple models to achieve a near-perfect accuracy of 98.62%,improving classification accuracy.The results highlight the promising potential of voice analysis in PD diagnosis and monitoring.Integrating advanced signal processing techniques and machine learning models provides reliable and accessible tools for PD assessment,facilitating early intervention and improving patient outcomes.This study contributes to the field by demonstrating the effectiveness of the proposed methodology and the significant role of WMV in enhancing classification accuracy for PD severity detection.展开更多
Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challeng...Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools(ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used Free Surfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters(including patch size, patch area, and the number of training subjects) on segmentation accuracy.展开更多
Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classif...Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.展开更多
A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach ad...A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database.展开更多
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金Science Research Project of Gansu Provincial Transportation Department(No.2017-012)
文摘The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.
基金Ministry of Science and Technology:Key Research and Development Project(2018YFB003800)Hunan Provincial Key Laboratory of Finance&Economics Big Data Science and Technology(Hunan University of Finance and Economics)2017TP1025 and HNNSF 2018JJ2535.
文摘In the context of the continuous development of the Internet,crowdsourcing has received continuous attention as a new cooperation model based on the relationship between enterprises,the public and society.Among them,a reasonably designed recommendation algorithm can recommend a batch of suitable workers for crowdsourcing tasks to improve the final task completion quality.Therefore,this paper proposes a crowdsourcing recommendation framework based on workers’influence(CRBI).This crowdsourcing framework completes the entire process design from task distribution,worker recommendation,and result return through processes such as worker behavior analysis,task characteristics construction,and cost optimization.In this paper,a calculation model of workers’influence characteristics based on the ablation method is designed to evaluate the comprehensive performance of workers.At the same time,the CRBI framework combines the traditional open-call task selection mode,builds a new task characteristics model by sensing the influence of the requesting worker and its task performance.In the end,accurate worker recommendation and task cost optimization are carried out by calculating model familiarity.In addition,for recommending workers to submit task answers,this paper also proposes an aggregation algorithm based on weighted influence to ensure the accuracy of task results.This paper conducts simulation experiments on some public datasets of AMT,and the experimental results show that the CRBI framework proposed in this paper has a high comprehensive performance.Moreover,CRBI has better usability,more in line with commercial needs,and can well reflect the wisdom of group intelligence.
文摘Parkinson's disease(PD)is a neurodegenerative disorder characterized by motor and non-motor symptoms that significantly impact an individual's quality of life.Voice changes have shown promise as early indicators of PD,making voice analysis a valuable tool for early detection and intervention.This study aims to assess and detect the severity of PD through voice analysis using the mobile device voice recordings dataset.The dataset consisted of recordings from PD patients at different stages of the disease and healthy control subjects.A novel approach was employed,incorporating a voice activity detection algorithm for speech segmentation and the wavelet scattering transform for feature extraction.A Bayesian optimization technique is used to fine-tune the hyperparameters of seven commonly used classifiers and optimize the performance of machine learning classifiers for PD severity detection.AdaBoost and K-nearest neighbor consistently demonstrated superior performance across various evaluation metrics among the classifiers.Furthermore,a weighted majority voting(WMV)technique is implemented,leveraging the predictions of multiple models to achieve a near-perfect accuracy of 98.62%,improving classification accuracy.The results highlight the promising potential of voice analysis in PD diagnosis and monitoring.Integrating advanced signal processing techniques and machine learning models provides reliable and accessible tools for PD assessment,facilitating early intervention and improving patient outcomes.This study contributes to the field by demonstrating the effectiveness of the proposed methodology and the significant role of WMV in enhancing classification accuracy for PD severity detection.
基金Project supported by the National Natural Science Foundation of China(No.61203224)the Science and Technology Innovation Foundation of Shanghai Municipal Education Commission,China(No.13YZ101)
文摘Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools(ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used Free Surfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters(including patch size, patch area, and the number of training subjects) on segmentation accuracy.
基金the Deanship of Scientific Research at King Khalid University for funding this work underGrant Number(RGP 2/209/42)PrincessNourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R136)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR27).
文摘Proper waste management models using recent technologies like computer vision,machine learning(ML),and deep learning(DL)are needed to effectively handle the massive quantity of increasing waste.Therefore,waste classification becomes a crucial topic which helps to categorize waste into hazardous or non-hazardous ones and thereby assist in the decision making of the waste management process.This study concentrates on the design of hazardous waste detection and classification using ensemble learning(HWDC-EL)technique to reduce toxicity and improve human health.The goal of the HWDC-EL technique is to detect the multiple classes of wastes,particularly hazardous and non-hazardous wastes.The HWDC-EL technique involves the ensemble of three feature extractors using Model Averaging technique namely discrete local binary patterns(DLBP),EfficientNet,and DenseNet121.In addition,the flower pollination algorithm(FPA)based hyperparameter optimizers are used to optimally adjust the parameters involved in the EfficientNet and DenseNet121 models.Moreover,a weighted voting-based ensemble classifier is derived using three machine learning algorithms namely support vector machine(SVM),extreme learning machine(ELM),and gradient boosting tree(GBT).The performance of the HWDC-EL technique is tested using a benchmark Garbage dataset and it obtains a maximum accuracy of 98.85%.
基金The authors would like to acknowledge the use of the GavabDB face database in this paper due to Moreno and Sanchez.This work was supported in part by the National Natural Science Foundation of China(Grant No.60872145)the National High Technology Research and Development Program of China(No.2009AA01Z315)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No.708085).
文摘A 3D face recognition approach which uses principal axes registration(PAR)and three face representation features from the re-sampling depth image:Eigenfaces,Fisherfaces and Zernike moments is presented.The approach addresses the issue of 3D face registration instantly achieved by PAR.Because each facial feature has its own advantages,limitations and scope of use,different features will complement each other.Thus the fusing features can learn more expressive characterizations than a single feature.The support vector machine(SVM)is applied for classification.In this method,based on the complementarity between different features,weighted decision-level fusion makes the recognition system have certain fault tolerance.Experimental results show that the proposed approach achieves superior performance with the rank-1 recognition rate of 98.36%for GavabDB database.